Answer:
The question is incomplete. The mechanism is not included in your question. The attached file contains the mechanism and the proposed mechanism.
Explanation:
See the attached file for the structure.
The product of reduction of ethyl 4-oxobutanoate with sodium borohydride in ethanol at room temperature for 30 minutes is ethyl 4- hydroxybutanoate .
Sodium borohydride is a relatively selective reducing agent Ethanolic solutions of Sodium borohydride reduces aldehyde , and ketone , in the presence of acid chloride , ester , epoxide , lactones , acids , nitriles , nitro groups.
The sodium borohydride does not reduce ester group because sodium borohydride is not strong enough and the electrophilicity at carbony carbon of ester is not more as compare toaldehyde , and ketone
The product of reduction of ethyl 4-oxobutanoate with sodium borohydride in ethanol at room temperature for 30 minutes is ethyl 4- hydroxybutanoate .
to learn more about sodium borohydride and ethanol click here ,
brainly.com/question/12955502
#SPJ4
Answer:
the protein capsid of naked viruses is less susceptible to environmental . condition
Explanation:
because the envelop is made in part of phospholipids. once the envelop is lysed ,the virus loses its functiovnal receptors and still able to infect susceptible cells.
Answer: aldehyde
Explanation: aldehyde has functional group R—CHO
Answer:
pH = 2.69
Explanation:
The complete question is:<em> An analytical chemist is titrating 182.2 mL of a 1.200 M solution of nitrous acid (HNO2) with a solution of 0.8400 M KOH. The pKa of nitrous acid is 3.35. Calculate the pH of the acid solution after the chemist has added 46.44 mL of the KOH solution to it.</em>
<em />
The reaction of HNO₂ with KOH is:
HNO₂ + KOH → NO₂⁻ + H₂O + K⁺
Moles of HNO₂ and KOH that react are:
HNO₂ = 0.1822L × (1.200mol / L) = <em>0.21864 moles HNO₂</em>
KOH = 0.04644L × (0.8400mol / L) = <em>0.0390 moles KOH</em>
That means after the reaction, moles of HNO₂ and NO₂⁻ after the reaction are:
NO₂⁻ = 0.03900 moles KOH = moles NO₂⁻
HNO₂ = 0.21864 moles HNO₂ - 0.03900 moles = 0.17964 moles HNO₂
It is possible to find the pH of this buffer (<em>Mixture of a weak acid, HNO₂ with the conjugate base, NO₂⁻), </em>using H-H equation for this system:
pH = pKa + log₁₀ [NO₂⁻] / [HNO₂]
pH = 3.35 + log₁₀ [0.03900mol] / [0.17964mol]
<h3>pH = 2.69</h3>