<span>It is amorphous because it gets softer and softer, and it doesn't melt at a distinct temperature.
</span>
To write quantities in ordinary notation, you need to notice the power of the exponent.
If the power is positive, then you move the decimal point to the right by the number the power in exponent tells you.
If the power is negative, then you move the decimal point to the left by the number the power in exponent tells you.
We have:
3 x 10^-4 : the power of exponent is negative, therefore, we will move the decimal point 4 places to the left.
3 x 10^-4 = 0.0003 km
3 x 10^4 : he power of exponent is positive, therefore, we will move the decimal point 4 places to the right.
3 x 10^4 = 30000 km
Explanation:
Mass of fructose = 33.56 g
Mass of water = 18.88 g
Total mass of the solution = Mass of fructose + Mass of water = M
M = 33.56 g + 18.88 g =52.44 g
Volume of the solution = V = 40.00 mL
Density =
a) Density of the solution:

b) Molar mass of fructose = 180.16 g/mol
Moles of fructose = 
Molar mass of water = 18.02 g/mol
Moles of water= 
Mole fraction of fructose in this solution:


Mole fraction of water = 
c) Average molar mass of of the solution:
=

d) Mass of 1 mole of solution = 42.50 g/mol
Density of the solution = 1.311 g/mL
d) Specific molar volume of the solution:


0.008 ÷ 51.3 = 0.0002
Sig Figs
1
0.0002
Decimals
4
0.0002
Scientific Notation
2 × 10-4
E-Notation
2e-4
Words
zero point zero zero zero two
I HOPE I HELP