Answer: D. 19.9 g hydrogen remains.
Explanation:
To calculate the moles, we use the equation:
a) moles of
b) moles of
According to stoichiometry :
1 mole of
require 1 mole of
Thus 0.0787 moles of
require=
of
Thus
is the limiting reagent as it limits the formation of product and
acts as the excess reagent. (10.0-0.0787)= 9.92 moles of
are left unreacted.
Mass of
Thus 19.9 g of
remains unreacted.
Since the density of water is 1 g /mL, hence there is 100
g of H2O. So total mass is:
m = 100 g + 5 g = 105 g
=> The heat of reaction can be calculated using the
formula:
δhrxn = m C ΔT
where m is mass, C is heap capacity and ΔT is change in
temperature = negative since there is a decrease
δhrxn = 105 g * 4.18 J/g°C * (-2.30°C)
δhrxn = -1,009.47 J
=> However this is still in units of J, so calculate
the number of moles of NaCl.
moles NaCl = 5 g / (58.44 g / mol)
moles NaCl = 0.0856 mol
=> So the heat of reaction per mole is:
δhrxn = -1,009.47 J / 0.0856 mol
δhrxn = -11,798.69 J/mol = -11.8 kJ/mol
Answer:
Newton 3rd Law of Motion or the Law of Force Pairs
(An applied force)
Answer:
1kg/L
Explanation:
1.) convert grams to kilograms
1000g÷1000=1kg
2.)use formula to find density

= 1kg/1.0L
=1kg/L
Answer:
63.5 w isvthebanswerok is th answer