Refer to the diagram shown below.
u = 0, the initial vertical velocity
Assume g = 9.8 m/s² and ignore air resistance.
At the first stage of landing on the ground, the distance traveled is
h = 3.1 - 0.6 = 2.5 m.
If v = the vertical velocity at this stage, then
v² = u² + 2gh
v² = 2*(9.8 m/s²)*(2.5 m) = 49 (m/s)²
v = 7 m/s
At the second stage of landing on the ground, let a = the acceleration (actually deceleration) that his body provides to come to rest.
The distance traveled is 0.6 m.
Therefore
0 = (7 m/s)² + 2(a m/s²)*(0.6 m)
a = - 49/1.2 = - 40.833 m/s²
Answers:
(a) The velocity when the man first touches the ground is 7.0 m/s.
(b) The acceleration is -40.83 m/s² (deceleration of 40.83 m/s²) to come to rest within 0.6 m.
It is true that the light is 15.000 more dangerous than the radiation of a microwave.
<h3>What is the wavelength?</h3>
The wavelength shows the extent or how far the wave travels. Now we know that the energy of the wave can be use to find out how much dangerous the wave is.
Now;
1.6 * 10^-19 J = 1eV
x J = 1.8 eV
x = 1.8 eV * 1.6 * 10^-19 J /1eV
x = 2.88 * 10^-19 J
Now if the energy of the microwaves is 1.2 x 10^-4 J, then it follows that;
2.88 * 10^-19 J/ 1.2 x 10^-4 J,
= 2.4 * 10^15
Hence, it is true that the light is 15.000 more dangerous than the radiation of a microwave.
Learn more about microwave:brainly.com/question/15708046
#SPJ1
Answer:
the responding variable is the water boiling
Explanation:
a responding variable is the same thing as a dependent variable and an independent variable you change the independent variable is the amount of salt, the control group is how long water takes to boil without adding salt, and a constant is the same amount of water
Answer:
a) 
b) 
c) Towards the center of the centrifuge
Explanation:
a)
Becuse the centrifuge rotates in circular motion, there's an angular acceleration tha simulates high gravity accelerations

with r the radius and ω the amgular velocity, in or case
so:
and g=9.8
solving for ω:


b) Linear speed (v) and angular speed are related by:


c) The apparent weigth is pointing towards the center of the circle, becuse angular acceleration is pointing in that direction.