Answer:
D. two positively charged objects
Answer: 148348.6239 kg•m/s
Explanation: Firstly, we need to convert the 14700 N into kilograms, and to do so, use the formula net force is equal to mass times acceleration and rearrange the formula to find mass like shown below...
F = ma
F/a = m
14700/9.81 = 1498.470948 kg, this is your mass
Now that we convert it into kilograms, plug all the numbers into the variable of the momentum formula.
Momentum formula is P = mass x velocity
Like this:
P = 1498.470948 x 99
p = 148348.6239 kg•m/s.
I believe that is your answer, hope that helps you even a bit out.
Thanks.
The <em>gaseous state</em> of matter does that. A gas expands to take the shape and volume of whatever you put it into.
Answer:
The correct option is;
The atoms and molecules of the liquid water are moving, while the atoms and molecules of the glass are not moving
Explanation:
Matter that exist in the liquid or gaseous state consist of molecules that move freely about in the entire containing medium for gas, while the molecules move freely in the portion of the container occupied by the fluid in the case of liquid fluids
However, the molecules of a solid are fixed within the current shape of the solid and are only free to vibrate within a fixed location and the allow the passage of subatomic particles such as electrons
As such, the glass cup being a solid, consists of molecules fixed in space, while the liquid water consists of molecules which can translate within the portion of the volume of the glass filled with the water.
Answer:
Explanation:
Kinematics equation for first Object:
but:
The initial velocity is zero
it reach the water at in instant, t1, y(t)=0:
Kinematics equation for the second Object:
The initial velocity is zero
but:
it reach the water at in instant, t2, y(t)=0. If the second object is thrown 1s later, t2=t1-1=1.02s
The velocity is negative, because the object is thrown downwards