Answer:
The new self inductance is 3 times of the initial self inductance.
Explanation:
The self inductance of a solenoid is given by :
Where
N is number of turns per unit length
A is area of cross section
l is length of solenoid
If length and number of coil turns are both tripled,
l' = 3l and N' = 3N
New self inductance is given by :
So, the new self inductance is 3 times of the initial self inductance.
Answer:
0.5 m/s².
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 0 m/s
Final velocity (v) = 10 m/s
Time (t) = 20 s
Acceleration (a) =?
Acceleration can simply be defined as the rate of change of velocity with time. Mathematically, it is expressed as:
a = (v – u) / t
Where:
a is the acceleration.
v is the final velocity.
u is the initial velocity.
t is the time.
With the above formula, we can obtain the acceleration of the car as follow:
Initial velocity (u) = 0 m/s
Final velocity (v) = 10 m/s
Time (t) = 20 s
Acceleration (a) =?
a = (v – u) / t
a = (10 – 0) / 20
a = 10/20
a = 0.5 m/s²
Therefore, the acceleration of the car is 0.5 m/s².
Answer:
pressure is equal to the net amount of force acting per unit area. Dimensional Formulae of force is M1L1T-2 and of area is L2. Therefore Pressure's dimension can be obtained by calculating Force by Area. Dimensional formula of pressure difference is M1L-1T-2.
1) 3 miles/Hour
The speed is defined as the distance covered divided by the time taken:
where
d = 1.5 mi is the distance
t = 0.5 h is the time taken
Substituting,
2) 1.34 m/s south
Velocity, instead, is a vector, so it has both a magnitude and a direction. We have:
is the displacement in meters
is the time taken in seconds
Substituting,
And the direction of the velocity is the same as the displacement, so it is south.
Examples of strong acids are hydrochloric acid (HCl), perchloric acid (HClO4), nitric acid (HNO3) and sulfuric acid (H2SO4). ... For example, hydrogen chloride is a strong acid in aqueous solution, but is a weak acid when dissolved in glacial acetic acid.