Answer:

In which [Ag+] in negligibly small and the concentration of each reactant is 1.0 M
The answer is A) PO43- < NO3- < Na+
Explanation:
Ag+ is removed from the solution just like PO43-, so there are just 2 possible answers at this point: a or b. Then we can notice that Na3PO4 releases 3 moles of Na+ and just 1 mole of NO3-
We have 100mL of each reactant with the same concentration for both (1.0 M) so:
(0.1)(1)(3)= 0.3 mol Na+
(0.1)(1)= 0.1 mol NO3-
so PO43- < NO3- < Na+
Option (a) is correct.
A reducing agent is the one which loses electrons to other substance.
Here, Zn has oxidation number 0 in the L.H.S of the equation, but on R.H.S its oxidation number is +2 i.e. it Zn has donated two of its electrons to

.
Hence, Zn is the reducing agent here.
Answer:
It is a base and should turn a paper green
Explanation:
Answer:
0.007756M KHP; 0.0009695 moles NaOH reacts; 0.03488M NaOH.
Explanation:
Potassium hydrogen phthalate, KHP, is a salt used as standard to determine concentration of basic solutions as NaOH solutions.
To find molarity of the KHP solution we need to convert mass of KHP to moles and divide this in 125mL = 0.125L:
<em>Moles KHP -Molar mass: 204.22g/mol-:</em>
0.198g * (1mol / 204.22g) = 0.0009695 moles KHP
<em>Molarity:</em>
0.0009695 moles KHP / 0.125L = 0.007756M KHP
NaOH reacts with KHP as follows:
NaOH + KHP → Na⁺ + KP⁻ + H₂O
That means 1 mole of NaOH reacts per mole of KHP, that means moles of NaOH that reacts are = Moles of KHP added:
0.0009695 moles NaOH reacts
In 27.80mL = 0.02780L the NaOH was contained. Molarity is:
0.0009695 moles NaOH / 0.02780L =
0.03488M NaOH