Answer:
1.2 M
Explanation:
If you use the dilution equation (M1V1=M2V2), you end up with (50)(12)=(500)(M2), and when you solve for M2 you get 1.2 M.
Answer: The enthalpy of formation of
is -396 kJ/mol
Explanation:
Calculating the enthalpy of formation of 
The chemical equation for the combustion of propane follows:

The equation for the enthalpy change of the above reaction is:
![\Delta H^o_{rxn}=[(2\times \Delta H^o_f_{(SO_3(g))})]-[(2\times \Delta H^o_f_{(SO_2(g))})+(1\times \Delta H^o_f_{(O_2(g))})]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%282%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28SO_3%28g%29%29%7D%29%5D-%5B%282%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28SO_2%28g%29%29%7D%29%2B%281%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28O_2%28g%29%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![-198=[(2\times \Delta H^o_f_{(SO_3(g))})]-[(2\times \Delta -297)+(1\times (0))]\\\\\Delta H^o_f_{(SO_3(g))}=-396kJ/mol](https://tex.z-dn.net/?f=-198%3D%5B%282%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28SO_3%28g%29%29%7D%29%5D-%5B%282%5Ctimes%20%5CDelta%20-297%29%2B%281%5Ctimes%20%280%29%29%5D%5C%5C%5C%5C%5CDelta%20H%5Eo_f_%7B%28SO_3%28g%29%29%7D%3D-396kJ%2Fmol)
The enthalpy of formation of
is -396 kJ/mol
Answer is 10 units of water molecules.
The equation : y=3x-5
<h3>Further explanation
</h3>
Straight-line equations are mathematical equations that are described in the plane of cartesian coordinates
General formula
y-y1 = m(x-x1)
or
y = mx + c
Where
m = straight-line gradient which is the slope of the line
x1, y1 = the Cartesian coordinate that is crossed by the line
c = constant
The formula for a gradient (m) between 2 points in a line
m = Δy / Δx


Answer: The new concentration of a solution of
is 0.2 M 10.0 mL of a 2.0 M
solution is diluted to 100 mL.
Explanation:
Given:
= 10.0 mL,
= 2.0 M
= 100 mL,
= ?
Formula used to calculate the new concentration is as follows.

Substitute the values into above formula as follows.

Thus, we can conclude that the new concentration of a solution of
is 0.2 M 10.0 mL of a 2.0 M
solution is diluted to 100 mL.