Among formic acid (HCOOH ) and sulfuric acid (H₂SO₄), formic acid is the weak acid. Acidic strength of any acid is the tendency of that acid to loose proton. Among these two acids formic acid has a pKa value of 3.74 greater than that of sulfuric acid i.e. -10. Remember! Greater the pKa value of acid weaker is that acid and vice versa. Below I have drawn the Ionization of both acids to corresponding conjugate bases and protons. The structures below with charges are drawn in order to explain the reason for strength. As it is seen in charged structure of formic acid, there is one positive charge on carbon next to oxygen carrying proton. The electron density is shifted toward carbon as it is electron deficient and demands more electron hence, attracting electron density from oxygen and making the oxygen hydrogen bond more polar. While, in case of sulfuric acid it is depicted that Sulfur attached to oxygen containing proton has 2+ charge, means more electron deficient as compared to carbon of formic acid, hence, more electron demanding and strongly attracting electrons from oxygen and making the oxygen hydrogen bond very polar and highly ionizable.

There are 8 total hydrogen (H) atoms.
<h3>
Answer:</h3>
200 mL
<h3>
Explanation:</h3>
Concept tested: Dilution formula
We are given;
- Concentration of stock solution as 1.00 M
- Volume of the stock solution as 50 mL
- Molarity of the dilute solution as 0.25 M
We are required to calculate the volume of diluted solution;
- The stock solution is the original solution before dilution while diluted solution is the solution after dilution.
- Using the dilution formula we can determine the volume of diluted solution;
M1V1 = M2V2
Rearranging the formula;
V2 = M1V1 ÷ M2
= (1.00 M × 50 mL) ÷ 0.25 M
= 200 mL
Therefore, a volume of 200mL of 0.25 M solution could be made from the stock solution.
1 mole of N2 produces 2 moles of NH3
OR...
14 x 2 grams of N2 produces 2(14 +3) grams of NH3
1 gram of N2 produces 34/28 grams of NH3
therefore, 56 grams produce (34/28 )x 56 =68 grams of NH3
the answer thus would be 68 grams of NH3
1 milliliter of water (ml)
Equals : 0.04 ounces of water (oz wt.)
Fraction : 1/25 ounces of water (oz wt.)