Solution :
The nuclear reaction for boron is given as :

And the reaction for Cadmium is :
![$^{113}\textrm{Cd}_48 + ^{1}\textrm{n}_0 \rightarrow ^{114}\textrm{Cd}_48 + \gamma [5 \ \textrm{MeV}]$](https://tex.z-dn.net/?f=%24%5E%7B113%7D%5Ctextrm%7BCd%7D_48%20%2B%20%5E%7B1%7D%5Ctextrm%7Bn%7D_0%20%5Crightarrow%20%5E%7B114%7D%5Ctextrm%7BCd%7D_48%20%2B%20%5Cgamma%20%5B5%20%5C%20%5Ctextrm%7BMeV%7D%5D%24)
We know that it is easier that to shield or stop an alpha particle (i.e. He nucli) as they can be stopped or obstructed by only a few centimetres of the material. However, the gamma rays ( γ ) can penetrate through the material to a greater distance. Therefore, we can choose the first one.
Answer:
The governing ratio for thin walled cylinders is 10 if you use the radius. So if you divide the cylinder´s radius by its thickness and your result is more than 10, then you can use the thin walled cylinder stress formulas, in other words:
- if
then you have a thin walled cylinder
or using the diameter:
- if
then you have a thin walled cylinder
Answer:
modulus of elasticity for the nonporous material is 340.74 GPa
Explanation:
given data
porosity = 303 GPa
modulus of elasticity = 6.0
solution
we get here modulus of elasticity for the nonporous material Eo that is
E = Eo (1 - 1.9P + 0.9P²) ...............1
put here value and we get Eo
303 = Eo ( 1 - 1.9(0.06) + 0.9(0.06)² )
solve it we get
Eo = 340.74 GPa