Answer:
The answer is "Option B".
Explanation:
Given equation:

if

Calculating by the Routh's Hurwitz table:

Form the above table:

In the above, the value of k is greater than 1.
Answer:
A). Dry unit weight = 1657.08Kg/m3
B). Porosity = 0.37
C). Void ratio = 0.593
D). 0.712
Explanation:
Total unit weight, Y = 120pcf =1922.2 Kg/m3
Specific gravity of solids, Gs = 2.64
Water content, w = 16%
A). Dry unit weight
Yd = Y/(1+w)
= 1922.2/(1+0.16) = 1657.08Kg/m3
B). Porosity
However void ratio, e = Gs×Yw/Yd, where Yw = 1000Kg/m3
Void ratio = 2.64×1000/1657.08 = 0.593
And porosity = e/(1+e) =0.593/(1+0.593) = 0.37
C). void ratio, e = 0.593
D). Degree of saturation, S = m×Gs/e where m =water content
S = 0.16×2.64/0.593 = 0.712
Answer :
<h3>Flow rate in pipe B is = 0.3094

</h3>
Explanation:
Given :
Length of pipe A
m
Length of pipe B
m
Flow rate through pipe A 
Diameter of pipe
m
Velocity from pipe A,



Here, head loss is same because height is same.




Now rate of flow from pipe B is,



Answer:
i) 796.18 N/mm^2
ii) 1111.11 N/mm^2
Explanation:
Initial diameter ( D ) = 12 mm
Gage Length = 50 mm
maximum load ( P ) = 90 KN
Fractures at = 70 KN
minimum diameter at fracture = 10mm
<u>Calculate the engineering stress at Maximum load and the True fracture stress</u>
<em>i) Engineering stress at maximum load = P/ A </em>
= P /
= 90 * 10^3 / ( 3.14 * 12^2 ) / 4
= 90,000 / 113.04 = 796.18 N/mm^2
<em>ii) True Fracture stress = P/A </em>
= 90 * 10^3 / ( 3.24 * 10^2) / 4
= 90000 / 81 = 1111.11 N/mm^2
Answer:
Explanation:
Given that Г is the strength of vortex filament
R is closed circular loop radius
Attached is the expression for the induced velocity in vector form