1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
madreJ [45]
3 years ago
10

What else will change, if you change the point of view

Engineering
1 answer:
JulijaS [17]3 years ago
4 0

Answer:

We would need background context,

Explanation:

Then I would be happy to help!

You might be interested in
if you had 100 B size sheets and you cut them into A size sheets, how many sheets of A size paper would you have
castortr0y [4]

Answer:

200

Explanation:

A size sheets (also known as letter size) are 8.5 inches by 11 inches.

B size sheets (also known as ledger size) are 11 inches by 17 inches.

One B size sheet is twice as large as a A size sheet.  So if you have 100 B size sheets and cut each one in half, you'll get 200 A size sheets.

8 0
3 years ago
Sort the following alphabets using MergeSort and give required steps. [2 Marks]
OlgaM077 [116]

Answer:

I'm afraid i can't visualise it to you but visit the site below to help you out <3

Explanation:

https://opendsa-server.cs.vt.edu/embed/mergesortAV

4 0
3 years ago
Question 1 A design team completes their high-fidelity prototype of a responsive website. Before they hand off designs to the en
MissTica

A question the design team should answer before handing off the designs is: are the designs a true representation of the intended end user experience?

<h3>What is a website?</h3>

A website can be defined as a collective name that is used to describe series of webpages that are interconnected or linked together with the same domain name.

In Computer technology, the main goal of a high-fidelity prototype is to understand how end users would interact with a website and areas to improve the design.

In conclusion, the design team should answer whether or not the designs are a true representation of the intended end user experience before handing off the designs.

Read more on website here: brainly.com/question/26324021

5 0
2 years ago
Air at 26 kPa, 230 K, and 220 rn/s enters a turbojet engine in flight. The air mass flow rate is 25 kg/s. The compressor pressur
Paha777 [63]

Answer:

Explanation:

Answer:

Explanation:

Answer:  

Explanation:  

This is a little lengthy and tricky, but nevertheless i would give a step by step analysis to make this as simple as possible.  

(a). here we are asked to determine the Temperature and Pressure.  

Given that the properties of Air;  

ha = 230.02 KJ/Kg  

Ta = 230 K  

Pra = 0.5477  

From the energy balance equation for a diffuser;  

ha + Va²/2 = h₁ + V₁²/2  

h₁ = ha + Va²/2 (where V₁²/2 = 0)  

h₁ = 230.02 + 220²/2 ˣ 1/10³  

h₁ = 254.22 KJ/Kg  

⇒ now we obtain the properties of air at h₁ = 254.22 KJ/Kg  

from this we have;  

Pr₁ = 0.7329 + (0.8405 - 0.7329)[(254.22 - 250.05) / (260.09 - 250.05)]  

Pr₁ = 0.77759  

therefore T₁ = 254.15K  

P₁ = (Pr₁/Pra)Pa  

= 0.77759/0.5477 ˣ 26  

P₁ = 36.91 kPa  

now we calculate Pr₂  

Pr₂ = Pr₁ (P₂/P₁) = 0.77759 ˣ 11 = 8.55349  

⇒ now we obtain properties of air at  

Pr₂ = 8.55349 and h₂ = 505.387 KJ/Kg  

calculating the enthalpy of air at state 2  

ηc = h₁ - h₂ / h₁ - h₂  

0.85 = 254.22 - 505.387 / 254.22 - h₂  

h₂ = 549.71 KJ/Kg  

to obtain the properties of air at h₂ = 549.71 KJ/Kg  

T₂ = 545.15 K

⇒ to calculate the pressure of air at state 2

P₂/P₁ = 11

P₂ = 11 ˣ 36.913  

p₂ = 406.043 kPa

but pressure of air at state 3 is the same,

i.e. P₂ = P₃ = 406.043 kPa

P₃ = 406.043 kPa

To obtain the properties of air at  

T₃ = 1400 K, h₃ = 1515.42 kJ/Kg and Pr = 450.5

for cases of turbojet engine,

we have that work output from turbine = work input to the compressor

Wt = Wr

(h₃ - h₄) = (h₂ - h₁)

h₄ = h₃ - h₂ + h₁  

= 1515.42 - 549.71 + 254.22

h₄ = 1219.93 kJ/Kg

properties of air at h₄ = 1219.93 kJ/Kg

T₄ = 1140 + (1160 - 1140) [(1219.93 - 1207.57) / (1230.92 - 1207.57)]

T₄ = 1150.58 K

Pr₄ = 193.1 + (207.2 - 193.1) [(1219.93 - 1207.57) / (1230.92 - 1207.57)]

Pr₄ = 200.5636

Calculating the ideal enthalpy of the air at state 4;

Лr = h₃ - h₄ / h₃ - h₄*

0.9 = 1515.42 - 1219.93 / 1515.42 - h₄  

h₄* = 1187.09 kJ/Kg

now to obtain the properties of air at h₄⁻ = 1187.09 kJ/Kg

P₄* = 179.7 + (193.1 - 179.7) [(1187.09 -1184.28) / (1207.57 - 1184.28)]

P₄* = 181.316

P₄ = (Pr₄/Pr₃)P₃       i.e. 3-4 isentropic process

P₄ = 181.316/450.5 * 406.043

P₄ = 163.42 kPa

For the 4-5 process;

Pr₅ = (P₅/P₄)Pr₄

Pr₅ = 26/163.42 * 200.56 = 31.9095

to obtain the properties of air at Pr₅ = 31.9095

h₅= 724.04 + (734.82 - 724.04) [(31.9095 - 3038) / (32.02 - 30.38)]

h₅ = 734.09 KJ/Kg

T₅ = 710 + (720 - 710) [(31.9095 - 3038) / (32.02 - 30.38)]

T₅ = 719.32 K

(b) Now we are asked to calculate the rate of heat addition to the air passing through the combustor;

QH = m(h₃-h₂)

QH = 25(1515.42 - 549.71)

QH = 24142.75 kW

(c). To calculate the velocity at the nozzle exit;

we apply steady energy equation of a flow to nozzle

h₄ + V₄²/2 = h₅ + V₅²/2

h₄  + 0  = h₅₅ + V₅²/2

1219.9 ˣ 10³ = 734.09 ˣ 10³ + V₅²/2

therefore, V₅ = 985.74 m/s

cheers i hope this helps

6 0
3 years ago
A boiler is used to heat steam at a brewery to be used in various applications such as heating water to brew the beer and saniti
Natalija [7]

Answer:

net boiler heat = 301.94 kW

Explanation:

given data

saturated steam = 6.0 bars

temperature = 18°C

flow rate = 115 m³/h = 0.03194 m³/s

heat use by boiler = 90 %

to find out

rate of heat does the boiler output

solution

we can say saturated steam is produce at 6 bar from liquid water 18°C

we know at 6 bar from steam table

hg = 2756 kJ/kg

and

enthalpy of water at 18°C

hf = 75.64 kJ/kg

so heat required for 1 kg is

=hg - hf

= 2680.36 kJ/kg

and

from steam table specific volume of saturated steam at 6 bar is 0.315 m³/kg

so here mass flow rate is

mass flow rate = \frac{0.03194}{0.315}

mass flow rate m = 0.10139 kg/s

so heat required is

H = h × m  

here h is heat required and m is mass flow rate

H = 2680.36  × 0.10139

H =  271.75 kJ/s = 271.75 kW

now 90 % of boiler heat is used for generate saturated stream

so net boiler heat = \frac{H}{0.90}

net boiler heat = \frac{271.75}{0.90}

net boiler heat = 301.94 kW

5 0
3 years ago
Other questions:
  • Anyone have any good ways of revisiting <br> Or <br> Have any good study notes
    11·1 answer
  • The dry unit weight of a soil sample is 14.8 kN/m3.
    12·1 answer
  • When removing the balance shaft assembly: Technician A inspects the bearings for unusual wear or damage. Technician B smoothens
    15·1 answer
  • What is the definition of a tolerance on a dimension typically found on technical drawings?
    7·1 answer
  • If a person runs a distance of 0.7 km in 3 min, what is his average speed in kilometres/hour ​
    7·1 answer
  • What did Brother Guy say when he was showing all the pictures of scientists? (the basic point he was making)
    6·2 answers
  • ⚠️Answer needed quick!!⚠️
    5·1 answer
  • Basic C++ For Loop I'm trying to learn. Replit tells me that the for in the forloop is an error, but I don't know what's wrong.
    7·1 answer
  • What is the objective of phasing out an INDUCTION MOTOR before putting the machine into commission?
    11·1 answer
  • An open tank contain oil of specific gravity 0.75 on top of
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!