Answer:
c
Explanation:
if someone is wrong that they can help with
Answer:
The amount of energy transferred to the water is 4.214 J
Explanation:
The given parameters are;
The mass of the object that drops = 5 kg
The height from which it drops = 86 mm (0.086 m)
The potential energy P.E. is given by the following formula
P.E = m·g·h
Where;
m = The mass of the object = 5 kg
g = The acceleration de to gravity = 9.8 m/s²
h = The height from which the object is dropped = 0.086 m
Therefore;
P.E. = 5 kg × 9.8 m/s² × 0.086 m = 4.214 J
Given that the potential energy is converted into heat energy, that raises the 1 g of water by 1°C, we have;
The amount of energy transferred to the water = The potential energy, P.E. = 4.214 J.
Sorry need points I'm new
Answer:
275 Kelvin
Explanation:
Coefficient of Performance=11



Answer:
a) 2,945 mC
b) P(t) = -720*e^(-4t) uW
c) -180 uJ
Explanation:
Given:
i (t) = 6*e^(-2*t)
v (t) = 10*di / dt
Find:
( a) Find the charge delivered to the device between t=0 and t=2 s.
( b) Calculate the power absorbed.
( c) Determine the energy absorbed in 3 s.
Solution:
- The amount of charge Q delivered can be determined by:
dQ = i(t) . dt

- Integrate and evaluate the on the interval:

- The power can be calculated by using v(t) and i(t) as follows:
v(t) = 10* di / dt = 10*d(6*e^(-2*t)) /dt
v(t) = 10*(-12*e^(-2*t)) = -120*e^-2*t mV
P(t) = v(t)*i(t) = (-120*e^-2*t) * 6*e^(-2*t)
P(t) = -720*e^(-4t) uW
- The amount of energy W absorbed can be evaluated using P(t) as follows:

- Integrate and evaluate the on the interval:
