<em>Answer:</em>
- 0.052301 km have 5 significant figure
- 400 cm have 1 significant figure
- 50.0 m have 3 significant figure
- 4500.01 ml have 6 significant figure
<em>Explanation:</em>
According to rules of significant figure
0.052301 km have 5 significant figure:
- Zero to the left of the first non zero digit not significant.
- Zero between the non zero digits are significant.
<em>400 cm have 1 significant figure:</em>
- Trailing zeros are not significant in numbers without decimal points.
<em>50.0 m have 3 significant figure:</em>
- Trailing zeros are significant in numbers when there is decimal points.
<em>4500.01 ml have 6 significant figure:</em>
- Zero between the non zero digits are significant.
Answer:
Mass = 4.6 g
Explanation:
Given data:
Number of molecules of sucrose = 8.1 ×10²¹ molecules
Mass of sucrose = ?
Solution:
First of all we will calculate the number of moles by using Avogadro number.
1 mole × 8.1 ×10²¹ molecules / 6.022×10²³ molecules
1.35 × 10⁻² mol
Mass of sucrose:
Mass = number of moles × molar mass
Molar mass = 342.3 g/mol
Mass = 1.35 × 10⁻² mol ×342.3 g/mol
Mass = 462.1 × 10⁻² g
Mass = 4.6 g
Answer:
Blue
Explanation:
If you look at a flame, blue is always at the bottom right? So that would be common sense that blue would be the hottest.
I don’t see nun tho where’s the objects
It will probably zip far from you and join itself to an adjacent molecule or atom. it gets to be distinctly radioactive when its core contains an excessive number of or an excessively couple of neutrons. Attempt to keep an indistinguishable number of neutrons and protons from you construct your iota. In the event that the awkwardness is excessively extraordinary, radioactive rot will happen.