Explanation:

Equilibrium constant of reaction = 
Concentration of NO = ![[NO]=\frac{2.69\times 10^{-2} mol}{1 L}=2.69\times 10^{-2} M](https://tex.z-dn.net/?f=%5BNO%5D%3D%5Cfrac%7B2.69%5Ctimes%2010%5E%7B-2%7D%20mol%7D%7B1%20L%7D%3D2.69%5Ctimes%2010%5E%7B-2%7D%20M)
Concentration of bromine gas = ![[Br_2]=\frac{3.85\times 10^{-2} mol}{1 L}=3.85\times 10^{-2} M](https://tex.z-dn.net/?f=%5BBr_2%5D%3D%5Cfrac%7B3.85%5Ctimes%2010%5E%7B-2%7D%20mol%7D%7B1%20L%7D%3D3.85%5Ctimes%2010%5E%7B-2%7D%20M)
Concentration of NOBr gas = ![[Br_2]=\frac{9.56\times 10^{-2} mol}{1 L}=9.56\times 10^{-2} M](https://tex.z-dn.net/?f=%5BBr_2%5D%3D%5Cfrac%7B9.56%5Ctimes%2010%5E%7B-2%7D%20mol%7D%7B1%20L%7D%3D9.56%5Ctimes%2010%5E%7B-2%7D%20M)
The reaction quotient is given as:
![Q=\frac{[NOBr]^2}{[NO]^2[Br_2]}=\frac{(9.56\times 10^{-2} M)^2}{(2.69\times 10^{-2} M)^2\times 3.85\times 10^{-2} M}](https://tex.z-dn.net/?f=Q%3D%5Cfrac%7B%5BNOBr%5D%5E2%7D%7B%5BNO%5D%5E2%5BBr_2%5D%7D%3D%5Cfrac%7B%289.56%5Ctimes%2010%5E%7B-2%7D%20M%29%5E2%7D%7B%282.69%5Ctimes%2010%5E%7B-2%7D%20M%29%5E2%5Ctimes%203.85%5Ctimes%2010%5E%7B-2%7D%20M%7D)


The reaction will go in backward direction in order to achieve an equilibrium state.
1. In order to reach equilibrium NOBr (g) must be produced. False
2. In order to reach equilibrium K must decrease. False
3. In order to reach equilibrium NO must be produced. True
4. Q. is less than K . False
5. The reaction is at equilibrium. No further reaction will occur. False
Answer:
1.3×10⁻³ M
Explanation:
Hello,
In this case, given the dissociation reaction of acetic acid:

We can write the law of mass action for it:
![Ka=\frac{[H_3O^+][CH_3CO_2^-]}{[CH_3CO_2H]}](https://tex.z-dn.net/?f=Ka%3D%5Cfrac%7B%5BH_3O%5E%2B%5D%5BCH_3CO_2%5E-%5D%7D%7B%5BCH_3CO_2H%5D%7D)
Of course, excluding the water as heterogeneous substances are not included. Then, in terms of the change
due to the dissociation extent, we are able to rewrite it as shown below:

Thus, via the quadratic equation or solve, we obtain the following solutions:

Obviously, the solution is 0.00133M which match with the hydronium concentration, thus, answer is: 1.3×10⁻³ M in scientific notation.
Regards.
Answer:
[H⁺] = 3.16 × 10⁻⁵ mol/L
Explanation:
Given data:
pH of solution = 4.5
Hydrogen ion concentration = ?
Solution;
pH = -log [H⁺]
we will rearrange this formula:
[H⁺] = 10∧-pH
[H⁺] = 10⁻⁴°⁵
[H⁺] = 3.16 × 10⁻⁵ mol/L
The one that is being described above is what we call SCIENTIFIC LAW. Scientific law is what explains of what will happen every time in a certain situation. This is also different from scientific theory since scientific theory only gives an explanation to a group of happenings and this can still be modified. Hope this helps.
Balanced equation:
<span>CaO + 2 HCl --> CaCl2 + H2O </span>
<span>Calculate moles of each reactant: </span>
<span>60.4 g CaO / 56.08 g/mol = 1.08 mol CaO </span>
<span>69.0 g HCl / 36.46 g/mol = 1.89 mol HCl </span>
<span>Identify the limiting reactant: </span>
<span>Moles CaO needed to react with all HCl: </span>
<span>1.89 mol HCl X (1 mol CaO / 2 mol HCl) = 0.946 mol CaO </span>
<span>Because you have more CaO than that available, HCl is the limiting reactant. </span>
<span>Calculate moles and mass CaCl2: </span>
<span>1.89 mol HCl X (1 mol CaCl2 / 2mol HCl) X 111.0 g/mol = 105 g CaCl2</span>