Answer:
Newton (N)
Explanation:
A newton is the unit of measurement for force
Answer:
d. We can calculate it by applying Newton's version of Kepler's third law
Explanation:
The measurements of a Star like the Sun have several problems, the first one is distance, but the most important is the temperature since as we get closer all the instruments will melt. This is why all measurements must be indirect because of the effects that these variables create on nearby bodies.
Kepler's laws are deduced from Newton's law of universal gravitation, in these laws the mass of the Sun affects the orbit of the planets since it creates a force of attraction, if measured the orbit and the time it takes to travel it we can know the centripetal acceleration and with it knows the force, from where we clear the mass of the son.
Let's review the statements of the exercise
.a) False. We don't have good enough models for this calculation
.b) False. The size of the sun is very difficult to measure because it is a mass of gas, in addition the density changes strongly with depth
.c) False. The amount of light that comes out of the sun is not all the light produced and is due to quantum effects where the mass of the sun is not taken into account
.d) True. This method has been used to calculate the mass of the sun and the other planets since the variable distance and time are easily measured from Earth
Correct answer is D
Answer:
Properties of matter
Explanation:
All properties of matter are either extensive or intensive and either physical or chemical. Extensive properties, such as mass and volume, depend on the amount of matter that is being measured. Intensive properties, such as density and color, do not depend on the amount of matter.
Answer:
h
Explanation:
Coulomb's law, or Coulomb's inverse-square law, is an experimental law[1] of physics that quantifies the amount of force between two stationary, electrically charged particles. The electric force between charged bodies at rest is conventionally called electrostatic force or Coulomb force.[2] The law was first discovered in 1785 by French physicist Charles-Augustin de Coulomb, hence the name. Coulomb's law was essential to the development of the theory of electromagnetism, maybe even its starting point,[1] as it made it possible to discuss the quantity of electric charge in a meaningful way.[3]
The law states that the magnitude of the electrostatic force of attraction or repulsion between two point charges is directly proportional to the product of the magnitudes of charges and inversely proportional to the square of the distance between them,[4]
{\displaystyle F=k_{\text{e}}{\frac {q_{1}q_{2}}{r^{2}}}}{\displaystyle F=k_{\text{e}}{\frac {q_{1}q_{2}}{r^{2}}}}
Here, ke is Coulomb's constant (ke ≈ 8.988×109 N⋅m2⋅C−2),[1] q1 and q2 are the signed magnitudes of the charges, and the scalar r is the distance between the charges.
The force is along the straight line joining the two charges. If the charges have the same sign, the electrostatic force between them is repulsive; if they have different signs, the force between them is attractive.
Being an inverse-square law, the law is analogous to Isaac Newton's inverse-square law of universal gravitation, but gravitational forces are always attractive, while electrostatic forces can be attractive or repulsive.[2] Coulomb's law can be used to derive Gauss's law, and vice versa. In the case of a single stationary point charge, the two laws are equivalent, expressing the same physical law in different ways.[5] The law has been tested extensively, and observations have upheld the law on the scale from 10−16 m to 108 m.[5]
Answer: the amphoteric line, mental- nonmetal line, metalloid line, staircase, semimetal line. it can be called any of these names