1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
shtirl [24]
2 years ago
5

A small block with mass 0.200 kg is released from rest at the top of a frictionless incline. The block travels a distance 0.796

m down the incline in 2.00 s. The 0.200 kg block is replaced by a 0.400 kg block. If the 0.400 kg block is released from rest at the top of the incline, how far down the incline does it travel in 2.00 s
Physics
1 answer:
Agata [3.3K]2 years ago
5 0

Answer:

distance travelled by the block is 0.796 m

{ acceleration is independent of mass, so both the masses travel equal distance in 2 s }

Explanation:

Given that;

mass of block m = 0.200 kg

distance travelled d = 0.796 m

time t = 2.00 s

m₂ = 0.400 kg

If the 0.400 kg block is released from rest at the top of the incline, how far down the incline does it travel in 2.00 s?

Now, using the second equation of motion;

d = ut + (\frac{1}{2} × at²)

as the object started from rest, u=0

so, we substitute

0.796  = 0×2 + (\frac{1}{2} × a(2)²)

0.796  = 0 + (\frac{1}{2} × 4a)

0.796  = 2a

a = 0.796 / 2

a = 0.398 m/s²

using first equation of motion

V_{f} = u + at

we substitute

V_{f} = 0 + 0.398 × 2

V_{f} = 0.796 m/s

now, average velocity is given as;

V_{avg} = ( 0.796 m/s  + 0 ) / 2

V_{avg} = ( 0.796 m/s  + 0 ) / 2

now, distance as the block moves in 2s will be;

D = [( 0.796 m/s  + 0 ) / 2 ] × 2

D = 0.796 m

Therefore, distance travelled by the block is 0.796 m

{ acceleration is independent of mass, so both the masses travel equal distance in 2 s }

You might be interested in
Suspensions are a homogeneous mix True False​
nirvana33 [79]

Answer:

FALSE

Explanation:

Suspensions are heterogeneous mixtures from which some of the particles settle with time.

4 0
3 years ago
Read 2 more answers
One gram of Uranium averages release 1.01 KJ (10^7) of energy. How much mass could be converted to energy to release this much e
frutty [35]

Answer:

The amount of mass that needs to be converted to release that amount of energy is 1.122 X 10^{-7}  kg

Explanation:

From Albert Einstein's Energy equation, we can understand that mass can get converted to energy, using the formula

E= \Delta mc^{2}

where \Delta m = change in mass

c = speed of light = 3 \times 10 ^{8}m/s

Making m the subject of the formula, we can find the change in mass to be

\Delta m = \frac{E}{c^{2}}= \frac{1.01 \times 10^{3} \times 10^{7}}{(3 \times 10^{8})^{2}}= 1.122 \times 10 ^{-7}kg

There fore, the amount of mass that needs to be converted to release that amount of energy is 1.122 X 10 ^-7 kg

5 0
3 years ago
The center of gravity of a loaded truck depends on how the truck is packed. If it is 4.0 m high and 2.4 m wide, and its CG is 2.
Vitek1552 [10]

The slope of the road can be given as the ratio of the change in vertical

distance per unit change in horizontal distance.

  • The maximum steepness of the slope where the truck can be parked without tipping over is approximately <u>54.55 %</u>.

Reasons:

Width of the truck = 2.4 meters

Height of the truck = 4.0 meters

Height of the center of gravity = 2.2 meters

Required:

The allowable steepness of the slope the truck can be parked without tipping over.

Solution:

Let, <em>C</em> represent the Center of Gravity, CG

At the tipping point, the angle of elevation of the slope = θ

Where;

tan\left(\theta \right) = \dfrac{\overline{AM}}{\overline{CM}}

The steepness of the slope is therefore;

\mathrm{The \ steepness \  of  \ the  \ slope}= \dfrac{\overline{AM}}{\overline{CM}} \times 100

Where;

\overline{AM} = Half the width of the truck = \dfrac{2.4 \, m}{2} = 1.2 m

\overline{CM} = The elevation of the center of gravity above the ground = 2.2 m

\mathrm{The \ steepness \  of  \ the  \ slope}= \dfrac{1.2}{2.2} \times 100 \approx 54.55\%

tan\left(\theta \right) = \mathbf{\dfrac{2.2}{1.2}} = \dfrac{11}{6}

Elevation \ of \ the \ road \ \theta = arctan\left( \dfrac{6}{11} \right)  \approx 28.6 ^{\circ}

The maximum steepness of the slope where the truck can be parked is <u>54.55 %</u>.

Learn more here:

brainly.com/question/20793607

3 0
2 years ago
As additional resistors are connected in series to a constant voltage source, how is the power supplied by the source affected?
Furkat [3]

Answer:

(D) The power supplied by the source decreases.

Explanation:

If additional resistors are connected in series, then the total resistance of the circuit is increased. By the Ohm’s Law, V = iR, the current decreases.

The power supplied by the source is P = i*i*R = i*(i*R). The term in the parenthesis is the voltage of the circuit and is constant. The ‘i’ outside decreases, therefore the power supplied by the source decreases.

7 0
3 years ago
Read 2 more answers
The escape velocity of any object from Earth is 11.2 km/s. (a) Express this speed in m/s and km/h. (b) At what temperature would
natima [27]

Answer:

a ) 11.1 *10^3 m/s = 39.96 Km/h

b) T_{o2} =1.58*10^5 K

Explanation:

a)v_{es} =v_{rms}= 11.1 km/s =11.1 *10^3 m/s = 39.96 Km/h

b)

M_O2 = 32.00 g/mol =32.0*10^{-3} kg/mol

gas constant R = 8.31 j/mol.K

v_{rms} = \sqrt{ \frac{3RT}{M}}

So, v_{rms,o2} =\sqrt{ \frac{3RT_{o2}}{M_{o2}}}

multiply each side by M_{o2}, so we have

v_{rms,o2}^2 *M_{o2} =3RT_{o2}

solving for temperature T_{o2}

T_{o2} = \frac{v_{rms,o2}^2 *M_{o2}}{3R}

In the question given,v_{rms} =v_{es}

T_{o2} = \frac{(11.1*10^3)^2 *32.0*10^{-3}}{3*8.31}

T_{o2} =1.58*10^5 K

7 0
3 years ago
Other questions:
  • What is the speed of a jet plane that flies 7200 km in 9 hours (in km/hr)?
    9·1 answer
  • What alleles are always both expressed
    10·2 answers
  • You apply the brakes of your car abruptly and your book starts sliding off the front seat. Three observers sitting in the car ex
    13·1 answer
  • g A 1.5-kg mass attached to spring with a force constant of 20.0 N/m oscillates on a horizontal, frictionless track. At t = 0, t
    10·1 answer
  • What can you conclude about the total mechanical energy of a pendulum as it swings back and forth?
    10·1 answer
  • How to create a mirror from a clear glass? BRAINLIEST for the correct answer!!!
    10·1 answer
  • Future passive of( win)​
    11·1 answer
  • Una gota de lluvia (m = 3.54 x 10-5 Kg.) cae verticalmente a velocidad constante bajo la influencia de la gravedad y la resisten
    11·1 answer
  • The solution to a disjunction is the what of the two solutions
    9·1 answer
  • A trolley is moving at constant speed in a friction compensated track. Some plasticine is dropped on the trolley and sticks on i
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!