Answer:
it b
Explanation:
bc A water droplet falling in the atmosphere is spherical
It will be 49 Newtons of force in the down direction. To find the force in newtons, you multiply the mass (5 kg) by the gravity (which if 9.8).
The feel of weight comes due to the normal reaction force given by the support. Hence, the condition of weightlessness is when the normal reaction force becomes zero. So, during free fall there is no support which can provide the normal reaction. Hence, the bungee jumper feels weightless as she falls towards the earth because of the lack of support force that balances gravity.
Hence, the answer is 3.
Answer:
The velocity will be v = 22.1[m/s]
Explanation:
We can solve this problem by using the principle of energy conservation, where potential energy is converted to kinetic energy. For this problem we will take the point with maximum potential energy when the body is 25 [m] high. By the time the height is zero, the potential energy will have been transformed into kinetic energy, and we can find the velocity of the body.
![Ep = m*g*h\\where:\\m = mass = 88.2[kg]\\h = elevation = 25[m]\\g = gravity = 9.81 [m/s^2]\\Ep = 88.2*25*9.81 = 21631.05[J]\\](https://tex.z-dn.net/?f=Ep%20%3D%20m%2Ag%2Ah%5C%5Cwhere%3A%5C%5Cm%20%3D%20mass%20%3D%2088.2%5Bkg%5D%5C%5Ch%20%3D%20elevation%20%3D%2025%5Bm%5D%5C%5Cg%20%3D%20gravity%20%3D%209.81%20%5Bm%2Fs%5E2%5D%5C%5CEp%20%3D%2088.2%2A25%2A9.81%20%3D%2021631.05%5BJ%5D%5C%5C)
Now we know that the energy will be transformed.
![Ek=Ep\\Ek=0.5*m*v^{2} \\where:\\v=velocity [m/s]\\v=\sqrt{\frac{Ek}{0.5*m} } \\v=\sqrt{\frac{21631.05}{0.5*88.2} } \\v=22.14[m/s]](https://tex.z-dn.net/?f=Ek%3DEp%5C%5CEk%3D0.5%2Am%2Av%5E%7B2%7D%20%5C%5Cwhere%3A%5C%5Cv%3Dvelocity%20%5Bm%2Fs%5D%5C%5Cv%3D%5Csqrt%7B%5Cfrac%7BEk%7D%7B0.5%2Am%7D%20%7D%20%5C%5Cv%3D%5Csqrt%7B%5Cfrac%7B21631.05%7D%7B0.5%2A88.2%7D%20%7D%20%5C%5Cv%3D22.14%5Bm%2Fs%5D)