What language is this?? So I can translate it and answer your question
Answer:
This depends on what angle they are approaching each other before they collided.The two simple cases are if they are running in the same direction or opposite direction from each other. For either case, use the conservation of momentum equation to solve: M_total*V_result = M1*V1 + M2*V2
Explanation:
Here are two possible solutions.
Head-on collision: M1=78, V1=8.5, M2=72, V2=-7.5 (that's negative because he's running the other way), M_total = 78+72 = 150, so V_result = (78*8.5 - 72*7.5)/150 = 0.82 m/s. Sanity check, they weigh about the same and so most of their velocity should cancel out.
Running the same way: change the sign of V2 to positive so V_result = (78*8.5 + 72*7.5)/150 = 8.02 m/s. Sanity check, they weigh about the same and the resultant speed is between the two starting velocities.
<em>hope it helps:)</em>
Our solar system formed from a huge cloud of dust and gas called a
c. solar nebula
Based on the nebular hypothesis, our solar system formed from hydrogen gas and interstellar dust. The gas and the dust contracted and formed the early stage of the sun.
A) We can use the equation of motion:
2as = v² - u²
s = (12² - (-6)²) / 2 x 4
s = 13.5 m
b) We calculate the time over which this displacement occurred using:
v = u + at
t = (12 - -6)/4
t = 4.5 seconds
Assuming the average speed equal to:
(12 + 6) /2 = 9 m/s
average speed = total distance/total time
total distance = 9 x 4.5
= 40.5 m
Answer:
Moment of Inertia, I = 0.016 kgm²
Explanation:
Mass of the ball, m = 0.20 kg
Length of the pitcher's arm, l = 0.28
Radius of the circular arc, r = 0.28 m
Moment of Inertia is given by the formula:
I = mr²
I = 0.20 * 0.28²
I = 0.20 * 0.0784
I = 0.01568
I = 0.016 kgm²