Answer: The element Na (Sodium) is getting oxidized and Hydrogen is getting reduced.
Explanation:
Oxidation reactions are the reactions in which addition of oxygen takes place.
Reduction reactions are the reactions in which loss of oxygen takes place.
For a given reaction:

Sodium is getting oxidized because there is an addition of reaction with that element.
Hydrogen is getting reduced because there is a removal of oxygen with that element.
Answer:
0.4 moles
Explanation:
To convert between moles and grams you need the molar mass of the compound. The molar mass of of CaCO3 is 100.09g/mol. You use that as the unit converter.
40gCaCO3* 1mol CaCO3/100.09gCaCO3 = 0.399640 mol CaCO3
This rounds to 0.4 moles CaCO3
For stainless steel different kinds of compositions are used. Based on that different series of stainless steel has been coined.
1. Series 200 - Iron alloyed with <span>chromium, nickel and manganese.
2. Series 300 - It has
a. Stainless Steel 304 - it has composition of 18% chromium and 8% Nickel
b. </span>Stainless Steel 316 - This has 18% chromium and 10% Nickel
Each kind of stainless steel is of different cost and has different applications.
Answer:
a. 1.23 V
b. No maximum
Explanation:
Required:
a. Is there a minimum standard reduction potential that the half-reaction used at the cathode of this cell can have?
b. Is there a maximum standard reduction potential that the half-reaction used at the cathode of this cell can have?
The standard cell potential (E°cell) is the difference between the standard reduction potential of the cathode and the standard reduction potential of the anode.
E°cell = E°red, cat - E°red, an
If E°cell must be at least 1.10 V (E°cell > 1.10 V),
E°red, cat - E°red, an > 1.10 V
E°red, cat - 0.13V > 1.10 V
E°red, cat > 1.23 V
The minimum standard reduction potential is 1.23 V while there is no maximum standard reduction potential.