Answer:
C. Graph C
Explanation:
We have a mixture of water and ice.
At 0 °C they are at equilibrium.
water-to-ice rate = ice-to-water rate
Next, we lower the temperature to -3 °C — just slightly below freezing.
The water will slowly turn to ice.
The water-to-ice rate will be slightly faster than the ice-to-water rate.
The purple bar will be slightly higher than the blue bar.
Graph C best represents the relative rates
A. is wrong. The ice-to-water rate is faster, so the water is melting. The temperature is slightly above freezing (say, 3 °C).
B. is wrong. The two rates are equal, so the temperature is 0 °C.
D. is wrong. The water-to-ice rate (freezing) is much greater than the ice-to-water rate, so the temperature is well below freezing( say, -10 °C).
Answer:
Initial pressure = 157 kpa (Approx)
Explanation:
Given:
final temperature = 234 K
final pressure = 210 kpa
Initial temperature = 175 K
Find:
Initial pressure
Computation:
Initial pressure / Initial temperature = final pressure / final temperature
Initial pressure / 175 = 210 / 234
Initial pressure = 157 kpa (Approx)
Answer:
The baking powder reacts with water to produce bubbles, while baking soda does not react with water.
Explanation:
Answer: I'm going to guess and say it is h2 or o2 I am not sure.
Explanation:
The answer is B.) Re, which stands for Rhenium.