Answer:
Part a)

Part b)

Part c)
Since we know that the base area will remain same always
so here the length and width of the object is not necessary to obtain the above data in such type of questions
Explanation:
Part a)
As we know that when cylinder float in the water then weight of the cylinder is counter balanced by the buoyancy force
So here we know
buoyancy force is given as



Now we know that the weight of the cylinder is given as

now we have


Part b)
When the same cylinder is floating in other liquid then we will have

so we have


Part c)
Since we know that the base area will remain same always
so here the length and width of the object is not necessary to obtain the above data in such type of questions
Answer:
No he should not attempt the pass
Explanation:
Let t be the time it takes for the car to pass the truck. The driver should ONLY attempt to pass when the distance covered by himself plus the distance covered by the oncoming car is less than or equal 400 m (a near miss)
At acceleration of 1m/s2 and a clear distance of 10 + 20 + 10 = 40 m, we can use the following equation of motion to estimate the time t in seconds




Within this time frame, the first car would have traveled a total distance of the clear distance (40m) plus the distance run by the truck, which is
8.94 * 25 = 223.6m
So the total distance traveled by the first car is 223.6 + 40 = 263.6m
The distance traveled by the 2nd car within 8.94 s at rate of 25m/s is
8.94 * 25 = 223.6 m
So the total distance covered by both cars within this time frame
223.6 + 263.6 = 487.2m > 400 m
So no, he should not attempt the pass as we will not clear it in time.
Answer:
9.45 kWh
Explanation:
Energy = Power × time
E = 900 W × (1.5 h/day × 7 day)
E = 9450 Wh
E = 9.45 kWh
Answer:
Work is measured as the product of force and the displacement in the direction of the force. Work = force × displacement in the direction of the force.
Well we know the correct answer cannot be "a" bcause velocity is tangent to the circlular path of an object experienting centripical motion. Velocity DOES NOT point inward in centripical motion.
we know the correct answer cannot be "b" because "t" stands for "time" which cannot point in any direction. so, time cannot point toward the center of a circle and therefore this answer must be incorrect.
I would choose answer choice "c" because both force and centripical acceleration point toward the center of the circle.
I do not think answer choice "d" can be correct because the velocity of the mass moves tangent to the circle. velocity = (change in position) / time. Therefore, by definition the mass is moving in the direction of the velocity which does not point to the center of the circle.
does this make sense? any questions?