- Weight (W) = 110 N
- Acceleration due to gravity (g) = 9.8 m/s^2
- Let the mass of the object be m.
- By using the formula, W = mg, we get,
- 110 N = 9.8 m/s^2 × m
- or, m = 110 N ÷ 9.8 m/s^2
- or, m = 11.2 Kg
<u>Answer:</u>
<em><u>The </u></em><em><u>mass </u></em><em><u>of </u></em><em><u>the </u></em><em><u>object </u></em><em><u>is </u></em><em><u>1</u></em><em><u>1</u></em><em><u>.</u></em><em><u>2</u></em><em><u> </u></em><em><u>Kg.</u></em>
Hope you could get an idea from here.
Doubt clarification - use comment section.
Answer:
1 C
Explanation:
The intensity of electric current is defined as

where
I is the current
q is the amount of charge transferred
t is the time interval during which the charge is transferred
For the lightning in this problem, we have
is the current
is the time interval
Solving the formula for q, we find the amount of charge transferred:

Answer:
No, distance is more important.
Answer:
The last graph.
Explanation:
Gravitational potential energy is the energy possessed by a body at a given height from the Earth's surface.
The formula to find the gravitational potential energy is given as:

Where, 'U' is the gravitational potential energy.
'm' is the mass of the body.
'g' is the acceleration of the body due to gravity.
'h' is the height of the body above the Earth's surface.
So, from the above equation, it is clear that, gravitational potential energy is directly proportional to the height. So, as height increases, the gravitational potential energy increases. At the surface of Earth, where, height is 0, the gravitational potential energy is also zero.
Therefore, the correct graph is a straight line with positive slope and passing through the origin. So, the last option is the correct one.
<h2>It solved by the Hooke's law states F=kx</h2>
answer is
<h2>0.4n/m</h2>