Answer:
21.75 m
Explanation:
t = Time taken for the car to slow down = 0.75 s
u = Initial velocity = 50 m/s
v = Final velocity = 8 m/s
s = Displacement
a = Acceleration
Equation of motion

Acceleration is -56 m/s²

The distance covered in the 0.75 seconds is 21.75 m
Answer:
Explanation:
f = 
T = 120 N
L = 3.00 m
(m/L) = 120 g/cm(100 cm/m / 1000 g/kg) = 12 kg/m
(wow that's massive for a "rope")
f =
)
f =
/6 = 0.527 Hz
This is a completely silly exercise unless this "rope" is in space somewhere as the weight of the rope (353 N on earth) far exceeds the tension applied.
A much more reasonable linear density would be 120 g/m resulting in a frequency of √1000/6 = 5.27 Hz on a rope that weighs only 3.5 N
If you are talking about sound frequency you need to consider what area you are in because in a concert hall it is big and helps the sound spread but in an airplane it is the opposite.
Answer:
the direction of the velocity is downward and the acceleration decreases throughout the motion
Explanation:
since the gradient is negative it is decelerating
I think it’s a nebula i hope it’s right