1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
user100 [1]
3 years ago
14

A steady‐flow gas furnace supplies hot air at a rate of 850 cfm and conditions of 120F and 1.00 atm. The air splits into two bra

nches: a 10" diameter duct and a 12" diameter duct. The velocity in the 12" diameter duct is 800 ft/min.
Determine:
(a) The volumetric flow in the 12"‐dia. duct.
(b) The velocity in the 10"‐dia. duct.
(c) The volumetric flow rate into the furnace if the air enters at 68F and 1.00 atm.
(d) The mass flow rate of air entering the furnace.
Engineering
1 answer:
V125BC [204]3 years ago
8 0

Answer:

if I am not wrong the volumetric flow rate into the finance if the year inter 868 1.00 pm

You might be interested in
Always refill your gas tank well before
Scorpion4ik [409]
I believe it’s c because you don’t want your gas to run real low, so I think it’s best to do it when your fuel.
8 0
3 years ago
Unit for trigonometric functions is always "radian". 1. 10 points: Do NOT submit your MATLAB code for this problem (a) Given f(x
RoseWind [281]

Answer:

Below is the required code.

Explanation:

%% Newton Raphson Method

clear all;

clc;

x0=input('Initial guess:\n');

x=x0;

f=exp(-x)-sin(x)-0.2;

g=-exp(-x)-cos(x);

ep=10;

i=0;

cc=input('Condition of convergence:\n');

while ep>=cc

i=i+1;

temp=x;

x=x-(f/g);

f=exp(-x)-sin(x)-0.2;

g=-exp(-x)-cos(x);

ep=abs(x-temp);

fprintf('x = %6f and error = %6f at iteration = %2f \n',x,ep,i);

end

fprintf('The solution x = %6f \n',x);

%% End of MATLAB Program

Command Window:

(a) First Root:

Initial guess:

1.5

Condition of convergence:

0.01

x = -1.815662 and error = 3.315662 at iteration = 1.000000

x = -0.644115 and error = 1.171547 at iteration = 2.000000

x = 0.208270 and error = 0.852385 at iteration = 3.000000

x = 0.434602 and error = 0.226332 at iteration = 4.000000

x = 0.451631 and error = 0.017029 at iteration = 5.000000

x = 0.451732 and error = 0.000101 at iteration = 6.000000

The solution x = 0.451732

>>

Second Root:

Initial guess:

3.5

Condition of convergence:

0.01

x = 3.300299 and error = 0.199701 at iteration = 1.000000

x = 3.305650 and error = 0.005351 at iteration = 2.000000

The solution x = 3.305650

>>

(b) Guess x=0.5:

Initial guess:

0.5

Condition of convergence:

0.01

x = 0.450883 and error = 0.049117 at iteration = 1.000000

x = 0.451732 and error = 0.000849 at iteration = 2.000000

The solution x = 0.451732

>>

Guess x=1.75:

Initial guess:

1.75

Condition of convergence:

0.01

x = 227.641471 and error = 225.891471 at iteration = 1.000000

x = 218.000998 and error = 9.640473 at iteration = 2.000000

x = 215.771507 and error = 2.229491 at iteration = 3.000000

x = 217.692636 and error = 1.921130 at iteration = 4.000000

x = 216.703197 and error = 0.989439 at iteration = 5.000000

x = 216.970438 and error = 0.267241 at iteration = 6.000000

x = 216.971251 and error = 0.000813 at iteration = 7.000000

The solution x = 216.971251

>>

Guess x=3.0:

Initial guess:

3

Condition of convergence:

0.01

x = 3.309861 and error = 0.309861 at iteration = 1.000000

x = 3.305651 and error = 0.004210 at iteration = 2.000000

The solution x = 3.305651

>>

Guess x=4.7:

Initial guess:

4.7

Condition of convergence:

0.01

x = -1.916100 and error = 1.051861 at iteration = 240.000000

x = -0.748896 and error = 1.167204 at iteration = 241.000000

x = 0.162730 and error = 0.911626 at iteration = 242.000000

x = 0.428332 and error = 0.265602 at iteration = 243.000000

x = 0.451545 and error = 0.023212 at iteration = 244.000000

x = 0.451732 and error = 0.000187 at iteration = 245.000000

The solution x = 0.451732

>>

Explanation:

The two solutions are x =0.451732 and 3.305651 within the range 0 < x< 5.

The initial guess x = 1.75 fails to determine the solution as it's not in the range. So the solution turns to unstable with initial guess x = 1.75.

7 0
3 years ago
Determine whether or not each of the following four transaction execution histories is serializable. If a history is serializabl
ludmilkaskok [199]

Answer:

Option D. w1[x] w2[u] w2[y] w1[y] w3[x] w3[u] w1[z]

Explanation:

The execution in the option D is correct. This is because there is more than one reasonable criterion.

8 0
3 years ago
Why the inviscid, incompressible, and irrotational fields are governed by Laplace's equation?
creativ13 [48]

Answer: Laplace equation provides a linear solution and helps in obtaining other solutions by being added to various solution of a particular equation as well.

Inviscid , incompressible and irrotational field have and basic solution ans so they can be governed by the Laplace equation to obtain a interesting and non-common solution .The analysis of such solution in a flow of Laplace equation is termed as potential flow.

6 0
3 years ago
A gas within a piston–cylinder assembly undergoes an isothermal process at 400 K during which the change in entropy is 20.3 kJ/K
Mashcka [7]

Answer:

W= 8120 KJ

Explanation:

Given that

Process is isothermal ,it means that temperature of the gas will remain constant.

T₁=T₂ = 400 K

The change in the entropy given ΔS = 20.3 KJ/K

Lets take heat transfer is Q ,then entropy change can be written as

\Delta S=\dfrac{Q}{T}

Now by putting the values

20.3=\dfrac{Q}{400}

Q= 20.3 x 400 KJ

Q= 8120 KJ

The heat transfer ,Q= 8120 KJ

From first law of thermodynamics

Q = ΔU + W

ΔU =Change in the internal energy ,W=Work

Q=Heat transfer

For ideal gas ΔU  = m Cv ΔT]

At constant temperature process ,ΔT= 0

That is why ΔU  = 0

Q = ΔU + W

Q = 0+ W

Q=W= 8120 KJ

Work ,W= 8120 KJ

8 0
3 years ago
Other questions:
  • a sprue is 12 in long and has a diameter of 5 in at the top. The molten metal level in the pouring basing is taken to be 3 in fr
    13·2 answers
  • A square loop of wire surrounds a solenoid. The side of the square is 0.1 m, while the radius of the solenoid is 0.025 m. The sq
    6·1 answer
  • "The office personnel at Garden Glory use a database application to record services and related data changes in this database. F
    9·1 answer
  • Part of the following pseudocode is incompatible with the Java, Python, C, and C++ language Identify the problem. How would you
    12·1 answer
  • A structural component in the shape of a flat plate 29.6 mm thick is to be fabricated from a metal alloy for which the yield str
    11·1 answer
  • Compute the volume percent of graphite, VGr, in a 3.2 wt% C cast iron, assuming that all the carbon exists as the graphite phase
    8·1 answer
  • Why do engineers (and others) use the design process?
    13·1 answer
  • What is the most likely reason the rover won't travel in a straight line?
    9·1 answer
  • Is it permissible to install recessed fixture directly against wood ceiling joists? Explain why or why not.
    5·1 answer
  • ceramics must be heated in order to harden the clay and make it durable. the equipment used to heat the clay
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!