Answer:
15000 m/s
Explanation:
You just need to multiply the wavelength with the frequency.
Answer:
1. E x 4πr² = ( Q x r³) / ( R³ x ε₀ )
Explanation:
According to the problem, Q is the charge on the non conducting sphere of radius R. Let ρ be the volume charge density of the non conducting sphere.
As shown in the figure, let r be the radius of the sphere inside the bigger non conducting sphere. Hence, the charge on the sphere of radius r is :
Q₁ = ∫ ρ dV
Here dV is the volume element of sphere of radius r.
Q₁ = ρ x 4π x ∫ r² dr
The limit of integration is from 0 to r as r is less than R.
Q₁ = (4π x ρ x r³ )/3
But volume charge density, ρ = 
So, 
Applying Gauss law of electrostatics ;
∫ E ds = Q₁/ε₀
Here E is electric field inside the sphere and ds is surface element of sphere of radius r.
Substitute the value of Q₁ in the above equation. Hence,
E x 4πr² = ( Q x r³) / ( R³ x ε₀ )
The frequency of the wave has not changed.
In fact, the frequency of a wave is given by:

where v is the wave's speed and
is the wavelength.
Applying the formula:
- In air, the frequency of the wave is:

- underwater, the frequency of the wave is:

So, the frequency has not changed.
non examples of temperature are dixionanon , fairinheat, cabrowskin, and lastly ancomthere
Answer:
Explanation:
"The thermal energy moving from her coffee to the tongue" represent the heat.
Here coffee is at high temperature while tongue is at low temperature, when Ixchelt tongue make contact with coffee then thermal energy of coffee is absorbed by tongue and tongue gets burned.
As heat always from high Potential to low that is why heat is absorbed by tongue.