As the distance from a charged particle, "q", increases, the electric potential decreases.
<h3>
Electric potential between particles</h3>
The electric potential between particles is the work done in moving a unit charge from infinity to a certain point against the electrical resistance of the field.
V = Kq/r
where;
- K is Coulomb's constant
- q is the magnitude of the charge
- r is the distance between the charges
Thus, from the formula above, as the distance from a charged particle, "q", increases, the electric potential decreases.
Learn more about electric potential here: brainly.com/question/14306881
#SPJ1
Answer:
3.75 billion years
Explanation:
From the question given above, the following data were obtained:
Half-life (t½) = 1.25 billion years
Number of half-lives (n) = 3
Time (t) =?
The time taken for the sample of potassium-40 to contains one-eighth the original amount of parent isotope can be obtained as:
n = t / t½
3 = t / 1.25
Cross multiply
t = 3 × 1.25
t = 3.75 billion years.
Therefore, it will take 3.75 billion years for the sample of potassium-40 to contains one-eighth the original amount of parent isotope
Answer:
80.17 cm
Explanation:
Taking moments of forces about the center, the total clockwise moments is equal to the total counter clockwise moment:
Force * distance (counter clockwise) = force * distance (clockwise)
0.24 * 9.8 * (50 - 6) = 0.35 * 9.8 * (x - 50)
0.24 * 44 = 3.43x - 171.5
103.5 = 3.43x - 171.5
=> 3.43x = 103.5 + 171.5
3.43x = 275
x = 275/3.43 = 80.17 cm
I think it’s the derivative of y