a. The direction of the stone's velocity changes as it moves around the circle.
b. The magnitude of the stone's velocity does not change.
d. The change in direction of the stone's motion is due to the centripetal force acting on the stone.
Above given are true for the given situation.
<u>Answer:</u> Option A, B and D
<u>Explanation:</u>
Circular motion may be characterized as the moving of an objects along the diameter of the circle or any circular direction. It may be standardized and non-uniform based on whether or not the rate of rotation is unchanged.
The velocity, a vector quantity is constant in a uniform circle motion speed is constant as its direction continues to change. Centripetal force works inward toward the core to counterbalance the centrifugal force from the center moving outward.
Answer:
Resultant force = 8.6N
Explanation:
Using Pythogorus' theorem

Resultant force = 8.6N
Answer: Yos
Explanation: Becouse i experimented that btw
Answer:
A volume of a cubic meter of water from the surface of the lake has been compressed in 0.004 cubic meters.
Explanation:
The bulk modulus is represented by the following differential equation:

Where:
- Bulk module, measured in pascals.
- Sample volume, measured in cubic meters.
- Local pressure, measured in pascals.
Now, let suppose that bulk remains constant, so that differential equation can be reduced into a first-order linear non-homogeneous differential equation with separable variables:

This resultant expression is solved by definite integration and algebraic handling:




The final volume is predicted by:

If
,
and
, then:


Change in volume due to increasure on pressure is:



A volume of a cubic meter of water from the surface of the lake has been compressed in 0.004 cubic meters.