It's simple, just follow my steps.
1º - in 1 L we have

of

2º - let's find the number of moles.



3º - The concentration will be

But we have this reaction

This concentration will be the concentration of

![K_{sp}=\frac{[Ba^{2+}][CO_3^{2-}]}{[BaCO_3]}](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5Cfrac%7B%5BBa%5E%7B2%2B%7D%5D%5BCO_3%5E%7B2-%7D%5D%7D%7B%5BBaCO_3%5D%7D)
considering
![[BaCO_3]=1~mol/L](https://tex.z-dn.net/?f=%5BBaCO_3%5D%3D1~mol%2FL)
![K_{sp}=[Ba^{2+}][CO_3^{2-}]](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BBa%5E%7B2%2B%7D%5D%5BCO_3%5E%7B2-%7D%5D)
and
![[Ba^{2+}]=[CO_3^{2-}]=5.07\times10^{-5}~mol/L](https://tex.z-dn.net/?f=%5BBa%5E%7B2%2B%7D%5D%3D%5BCO_3%5E%7B2-%7D%5D%3D5.07%5Ctimes10%5E%7B-5%7D~mol%2FL)
We can replace it


Therefore the

is:
Electronegativity of an element decreases as we move down a group on the periodic table and electronegativity increases while moving from left to right across a period on the periodic table.
Explanation:
- The electronegativity increases as we move from left to right across a period because from left to right across a period, the nuclear charge is increasing Hence the attraction for the valence electrons also increases.
- As we move down a group, the atoms of each element have an increasing number of energy levels. The distance between the nucleus and valence electron shell increases and reduces the attraction for valence electrons. Hence electronegativity decreases as we move from top to bottom down a group.
In the equation,
2Al(s) + 3Cl2(g) —> 2AlCl3(s),
the large number "3" in front of Cl2 indicates the the number of moles of Chlorine molecules needed to balance the equation.
Hope this will help you.
If you like my answer. Please mark it as brainliest And Be my follower if possible.
<span>A reducing agent loses electrons, so on the left side of the equation N in HNO2 has an oxidation number of +3 and on the right side in NO3^- it has an oxidation number of +5, so it has lost electrons. Thus, the reducing agent would be HNO2.</span>
The chemical change can occur can be find if you mix the two solids in one direction