Answer: concentration
Explanation:
Concentration refers to the amount of a substance present in a sample. The more molecules of a substance present in a sample, the greater its concentration. The less molecules of a substance in a sample, the lesser the concentration. We are often concerned about analytically determining the concentration of a substance using diverse analytical methods in chemistry.
Answer:
energy known as the latent heat of vaporization is required to break the hydrogen bonds. At 100 °C, 540 calories per gram of water are needed to convert one gram of liquid water to one gram of water vapour under normal pressure.
Explanation:energy known as the latent heat of vaporization is required to break the hydrogen bonds. At 100 °C, 540 calories per gram of water are needed to convert one gram of liquid water to one gram of water vapour under normal pressure.
Answer:
We need 4.28 grams of sodium formate
Explanation:
<u>Step 1:</u> Data given
MW of sodium formate = 68.01 g/mol
Volume of 0.42 mol/L formic acid = 150 mL = 0.150 L
pH = 3.74
Ka = 0.00018
<u>Step 2:</u> Calculate [base)
3.74 = -log(0.00018) + log [base]/[acid]
0 = log [base]/[acid]
0 = log [base] / 0.42
10^0 = 1 = [base]/0.42 M
[base] = 0.42 M
<u>Step 3:</u> Calculate moles of sodium formate:
Moles sodium formate = molarity * volume
Moles of sodium formate = 0.42 M * 0.150 L = 0.063 moles
<u>Step 4:</u> Calculate mass of sodium formate:
Mass sodium formate = moles sodium formate * Molar mass sodium formate
Mass sodium formate = 0.063 mol * 68.01 g/mol
Mass sodium formate = 4.28 grams
We need 4.28 grams of sodium formate
Answer:
All employees should know how to work the system
the second one, any change in a DNA gene or chromosome