Industrially biomass, living or recently experienced obtain fuel from biological material or by using other industrial purposes are related. Widely, with the goal of obtaining biofuels fibers with cultivated plants, heat and chemicals used to obtain the means of animal and vegetable products. Biomass, organic waste can be burned as a fuel composition. However, geographical impact modified with, coal, organic materials such as oil-free. Are usually measured by dry weight
Answer : The cell potential for this cell 0.434 V
Solution :
The balanced cell reaction will be,

Here copper (Cu) undergoes oxidation by loss of electrons, thus act as anode. silver (Ag) undergoes reduction by gain of electrons and thus act as cathode.
First we have to calculate the standard electrode potential of the cell.
![E^o_{[Cu^{2+}/Cu]}=0.34V](https://tex.z-dn.net/?f=E%5Eo_%7B%5BCu%5E%7B2%2B%7D%2FCu%5D%7D%3D0.34V)
![E^o_{[Ag^{+}/Ag]}=0.80V](https://tex.z-dn.net/?f=E%5Eo_%7B%5BAg%5E%7B%2B%7D%2FAg%5D%7D%3D0.80V)
![E^o=E^o_{[Ag^{+}/Ag]}-E^o_{[Cu^{2+}/Cu]}](https://tex.z-dn.net/?f=E%5Eo%3DE%5Eo_%7B%5BAg%5E%7B%2B%7D%2FAg%5D%7D-E%5Eo_%7B%5BCu%5E%7B2%2B%7D%2FCu%5D%7D)

Now we have to calculate the concentration of cell potential for this cell.
Using Nernest equation :
![E_{cell}=E^o_{cell}-\frac{0.0592}{n}\log \frac{[Cu^{2+}][Ag]^2}{[Cu][Ag^+]^2}](https://tex.z-dn.net/?f=E_%7Bcell%7D%3DE%5Eo_%7Bcell%7D-%5Cfrac%7B0.0592%7D%7Bn%7D%5Clog%20%5Cfrac%7B%5BCu%5E%7B2%2B%7D%5D%5BAg%5D%5E2%7D%7B%5BCu%5D%5BAg%5E%2B%5D%5E2%7D)
where,
n = number of electrons in oxidation-reduction reaction = 2
= ?
Now put all the given values in the above equation, we get:


Therefore, the cell potential for this cell 0.434 V
25,000 Feet = 7620m
PE = mgh where m is mass, g is gravity accel: 9.8 n h is height
= 90 x 9.8 x 7620
= 6720840J
= 6.72MJ
F = ma where m is mass, a is accel = gravity = 9.8
= 90 x 9.8
= 882N
Accel = gravity = 9.8m/s^2
KE = 1/2mv^2 where m is mass n v is vel
if no wind resistance, PE leaving airplane = KE at net
6720840 = 1/2 x 90 x v^2
v^2 = 149352
v = 386.5m/s
Answer:
why would you waste points
Explanation:
Answer:
210
Explanation:
A ball rolls horizontally off the cliff at a speed of 30 m/s. It takes 7 seconds for the ball to hit the ground. What is the height of the cliff and the horizontal distance traveled by the ball?
S = (1/2)*9.8 m/s^2 * 7^2 = 240.1 m if the ball is very dense so air resistance, and therefore terminal velocity, can be ignored.
S = v * t = 30 m/s * 7 s = 210 m for the horizontal distance, again assuming negligible air resistance.