Distance = 556 km
Time = 3.4 h
Speed = Distance / Time = 556 / 3.4 = 163.52 km/h
Boiling-point elevation is a colligative property.
That means, the the boiling-point elevation depends on the molar content (fraction) of solute.
The dependency is ΔTb = Kb*m
Where ΔTb is the elevation in the boiling point, kb is the boiling constant, and m is the molality.
A solution of 6.00 g of Ca(NO3) in 30.0 g of water has 4 times the molal concentration of a solution of 3.00 g of Ca(NO3)2 in 60.0 g of water.:
(6.00g/molar mass) / 0.030kg = 200 /molar mass
(3.00g/molar mass) / 0.060kg = 50/molar mass
=> 200 / 50 = 4.
Then, given the direct proportion of the elevation of the boiling point with the molal concentration, the solution of 6.00 g of CaNO3 in 30 g of water will exhibit a greater boiling point elevation.
Or, what is the same, the solution with higher molality will have the higher boiling point.
A. the wax is a both; 1. physical change-solid to liquid.
2. chemical change- burned to CO2 + H20 + heat + carbon as seen as black on the rod
b. the wick is neither; the wick does not change, just provides conduit for wax to flame
c. the glass rod is physical change; the carbon is only deported
HOPE THIS HELPS, IVE ALSO LEARNING BEEN LEARNING THIS RECENTLY
Answer: 22.5 percent of incoming solar radiation goes directly to the surface of the Earth and is absorbed.
Explanation: Transfer of radiation through a planet's atmosphere. A planet and its atmosphere, in our solar system, can radiate back to space only as much energy as it absorbs from incoming solar radiation.
Adding more powdered reactants