Given:
Water, 2 kilograms
T1 = 20 degrees Celsius, T2 = 100
degrees Celsius.
Required:
Heat produced
Solution:
Q (heat) = nRT = nR(T2 = T1)
Q (heat) = 2 kilograms (4.184 kiloJoules
per kilogram Celsius) (100 degrees Celsius – 20 degrees Celsius)
<u>Q (heat) = 669.42 Joules
</u>This is the amount of heat
produced in boiling 2 kg of water.
Answer:
We know that in the decay process the sum of molecular number as well as molecular weight should be constant.
The following three reaction are as follows
1 .
Alpha decay of parent nuclide

The molecular number of alpha particle is 2 and molecular weight is 4 g/mol.
2.
Beta decay of daughter nuclide

v is the neutrino emission,The charge on the beta particle is zero.
3.
Alpha decay

Fixed shape and fixed volume
Answer: The maximum possible speed v is √2( hν - Ф ) / m
Explanation: You could be referring to the provided explanation, despite the fact that the question isn't comprehensive. When a photon collides with the surface of any metal, it transmits all of its energy to the electron in the atom. The collision causes the electron to travel with a certain amount of kinetic energy. This is referred to as the photoelectric effect. The maximum kinetic energy is calculated using Einstein's equation for the photoelectric effect:
K.E. = hν - Ф
½ mv² = hν - Ф
Hence the maximum possible speed is:
v = √2( hν - Ф ) / m
For more information on the photoelectric effect refer to this link: brainly.com/question/25027428
#SPJ4