Answer:
if anyone is reading my coment your oarents will became very fine soon
Answer:
translation
Explanation:
If a ball has an approximate mass of 0.5 kg, with what force must be kicked to give it an acceleration of 1.5m / s2?
Answer:
ω₂=1.20
Explanation:
Given that
mass of the turn table ,M= 15 kg
mass of the ice ,m= 9 kg
radius ,r= 25 cm
Initial angular speed ,ω₁ = 0.75 rad/s
Initial mass moment of inertia
Final mass moment of inertia
Lets take final speed of the turn table after ice evaporated =ω₂ rad/s
Now by conservation angular momentum
I₁ ω₁ =ω₂ I₂
ω₂=1.20
Answer:
w = √[g /L (½ r²/L2 + 2/3 ) ]
When the mass of the cylinder changes if its external dimensions do not change the angular velocity DOES NOT CHANGE
Explanation:
We can simulate this system as a physical pendulum, which is a pendulum with a distributed mass, in this case the angular velocity is
w² = mg d / I
In this case, the distance d to the pivot point of half the length (L) of the cylinder, which we consider long and narrow
d = L / 2
The moment of inertia of a cylinder with respect to an axis at the end we can use the parallel axes theorem, it is approximately equal to that of a long bar plus the moment of inertia of the center of mass of the cylinder, this is tabulated
I = ¼ m r2 + ⅓ m L2
I = m (¼ r2 + ⅓ L2)
now let's use the concept of density to calculate the mass of the system
ρ = m / V
m = ρ V
the volume of a cylinder is
V = π r² L
m = ρ π r² L
let's substitute
w² = m g (L / 2) / m (¼ r² + ⅓ L²)
w² = g L / (½ r² + 2/3 L²)
L >> r
w = √[g /L (½ r²/L2 + 2/3 ) ]
When the mass of the cylinder changes if its external dimensions do not change the angular velocity DOES NOT CHANGE
Answer:
A stripe of magnetic information that is affixed to the back of a plastic credit or debit card.