The chemical symbol for sodium bicarbonate is NaHCO3. Its molar mass is 84 g/mol. In each of one mol of sodium bicarbonate their is one mole of carbon dioxide with the molar mass of 44 grams per mol. We determine the number of moles in 0.10 g of sodium bicarbonate.
n sodium bicarbonate = (0.10 g) / (84 grams / mol)
= 1.19 x 10-3 moles sodium bicarbonate
Therefore, there are also 1.19 x 10-3 moles of carbon dioxide.
Answer:
a semi-crystalline structure is formed, which holds the water molecules apart, making ice less dense than liquid water, such that it floats. This means that it insulates the water beneath, allowing organisms in the liquid water to survive. Cohesion is the tendency of molecules within a substance to ‘ stick together
explanation:
Answer:
A) Concentration
Explanation:
When you add a chemical to itself it becomes more concentrated making it more powerful and faster
The molecular formula of sucrose is - C₁₂H₂₂O₁₁
molecular mass of sucrose - 342 g/mol
molarity of sucrose solution is 0.758 M
In 1 L solution the number of sucrose moles are - 0.758 mol
Therefore in 1.55 L solution, sucrose moles are - 0.758 mol/L x 1.55 L
= 1.17 mol
The mass of 1.17 mol of sucrose is - 1.17 mol x 342 g/mol = 4.00 x 10² g
Answer:
22Ω
Explanation:
Given parameters:
Potential difference = 3.3V
Current = 0.15A
Unknown:
Resistance = ?
Solution:
According to ohm's law, potential difference, current and resistance are related by the expression below;
V = I R
where V is the voltage
I is the current
R is the resistance
3.3 = 0.15 x R
R =
= 22Ω