Answer:
The object takes approximately 1.180 seconds to complete one horizontal circle.
Explanation:
From statement we know that the object is experimenting an Uniform Circular Motion, in which acceleration (
), measured in meters per square second, is entirely centripetal and is expressed as:
(1)
Where:
- Period of rotation, measured in seconds.
- Radius of rotation, measured in meters.
If we know that
and
, then the time taken by the object to complete one revolution is:




The object takes approximately 1.180 seconds to complete one horizontal circle.
Answer:
2.84 m/s
Explanation:
At the top position of the circular trajectory, the normal reaction is zero:
N = 0
So it means that the only force that is providing the centripetal force is the gravitational force (the weight of the bucket). Therefore we have:

where
m is the mass of the water bucket
g = 9.8 m/s^2 is the acceleration of gravity
v is the speed of the bucket
r = 0.824 m is the radius of the circle
Solving for v,

Explanation:
The buoyant force must be greater to float, otherwise it would sink, its like a barrel in water, the more water weight in it the more it sinks, the more air weight the more it rises.
The gravitational force is s type of force that has the ability to attract any two objects having mass. The gravitational force will be
.
<h3>What is the
gravitational force?</h3>
The gravitational force is s type of force that has the ability to attract any two objects with mass. Gravitational force tries to pull two masses towards each other.

Given,
mass of the sun (
)=
kg
mass of Jupiter(
)=
kg
distance between the sun and Jupiter (r)=
m

Newton
Hence the gravitational force between the sun and Jupiter will be 
To learn more about gravitational force refer to the link:
brainly.com/question/24783651