Answer:
The coupled velocity of both the blocks is 1.92 m/s.
Explanation:
Given that,
Mass of block A, 
Initial speed of block A, 
Mass of block B, 
Initial speed of block B, 
It is mentioned that if the two blocks couple together after collision. We need to find the common velocity immediately after collision. We know that due to coupling, it becomes the case of inelastic collision. Using the conservation of linear momentum. Let V is the coupled velocity of both the blocks. So,

So, the coupled velocity of both the blocks is 1.92 m/s. Hence, this is the required solution.
The amount of diffraction depends on the wavelength of light, with shorter wavelengths being diffracted at a greater angle than longer ones (in effect, blue and violet<span> light are diffracted at a larger angle than is red light).
I hope my answer has come to your help. God bless and have a nice day ahead!
</span>
Answer:
This property could be used to create technologically-advanced tools or machines that could easily locate the mineral deposits.
Explanation:
Mineral deposits are hard to find, unless you have the skill or the proper tools in locating them. This is the reason why many people are mining in order to explore the different areas where they could find these deposits.
If one would consider the property of minerals, such as being good conductors of heat and electricity,<u> then they could create a tool or machine that would aid in their exploration.</u> Inventors could probably come up with a sensitive detector which signals when it reaches an area of high heat and electric conductivity. Since most minerals such as <em>gold, silver, copper, galena, bornite </em>and the like have this property, then miners will have a lesser amount of time looking for them.
If this technology will be implemented, though, regulation policy must be strictly implemented because it might lead to<em> over-mining</em> thus leading to the depletion of mineral deposits.
Answer:
Aluminum
Explanation:
promise
give me brainlest plleaseee
Answer:
like horror? or action haha
Explanation: