Answer:
Energy (I need one more brainlist can i has?)
Explanation:
- Nuclear fusion occurs when two light nuclei fuse together into a heavier nucleus
- Nuclear fission occurs when a heavy, unstable nucleus breaks apart into two or more lighter nuclei
In both processes, the mass of the products is always smaller than the mass of the initial nuclei. This means that part of the initial mass has been converted into something else: into energy, which is released in the process.
The amount of energy released in the process can be calculated by using the famous Einstein's equivalence:
where m is the difference between the mass of the product and the initial mass of the nuclei, and c is the speed of light.
B. they both involve wave interaction.
I'm quite certain the answer is "stress".
Answer:
U = 8.30×10-⁹J
Explanation:
m1 = m2 = 5.00kg masses of the spheres
d = 15.0cm = 15×10-²m
r = 5.10cm = 5.10×10-²m
R = d + r = 15×10-² + 5.10×10-²
R = 20.10 ×10-²m = 0.201m
G = 6.67×10-¹¹Nm²/kg²
U = Gm1×m2/R = potential energybetween the spheres
U = 6.67×10-¹¹×5.00×5.00/0.201
U = 8.30×10-⁹J
Your diagram should include four forces:
• the box's weight, pointing down (magnitude <em>w</em> = 43.2 N)
• the normal force, pointing up (mag. <em>n</em>)
• the applied force, pointing the direction in which the box is sliding (mag. <em>p</em> = 6.30 N, with <em>p</em> for "pull")
• the frictional force, pointing oppoiste the applied force (mag. <em>f</em> )
The box is moving at a constant speed, so it is inequilibrium and the net forces in both the vertical and horizontal directions sum to 0. By Newton's second law, we have
<em>n</em> + (-<em>w</em>) = 0
and
<em>p</em> + (-<em>f</em> ) = 0
So then the forces have magnitudes
<em>w</em> = 43.2 N
<em>n</em> = <em>w</em> = 43.2 N
<em>p</em> = 6.30 N
<em>f</em> = <em>p</em> = 6.30 N