Information that is given:
a = -5.4m/s^2
v0 = 25 m/s
---------------------
S = ?
Calculate the S(distance car traveled) with the formula for velocity of decelerated motion:
v^2 = v0^2 - 2aS
The velocity at the end of the motion equals zero (0) because the car stops, so v=0.
0 = v0^2 - 2aS
v0^2 = 2aS
S = v0^2/2a
S = (25 m/s)^2/(2×5.4 m/s^2)
S = (25 m/s)^2/(10.8 m/s^2)
S = (625 m^2/s^2)/(10.8 m/s^2)
S = 57.87 m
Absolute strength measures strength adjusted for your body size, while relative strength measurses maximum strength exerted in a single effort. Hopefully that helps wasn't really sure what you were asking seemed like you had answered your own question.
Answer:
The minimum value of width for first minima is λ
The minimum value of width for 50 minima is 50λ
The minimum value of width for 1000 minima is 1000λ
Explanation:
Given that,
Wavelength = λ
For D to be small,
We need to calculate the minimum width
Using formula of minimum width


Where, D = width of slit
= wavelength
Put the value into the formula

Here,
should be maximum.
So. maximum value of
is 1
Put the value into the formula


(b). If the minimum number is 50
Then, the width is


(c). If the minimum number is 1000
Then, the width is


Hence, The minimum value of width for first minima is λ
The minimum value of width for 50 minima is 50λ
The minimum value of width for 1000 minima is 1000λ
Can you please stop pasting this question, just go to his profile and ask him.
Answer:
<u></u>
- <u>1. The potential energy of the swing is the greatest at the position B.</u>
- <u>2. As the swing moves from point B to point A, the kinetic energy is increasing.</u>
Explanation:
Even though the syntax of the text is not completely clear, likely because it accompanies a drawing that is not included, it results clear that the posittion A is where the seat is at the lowest position, and the position B is upper.
The gravitational <em>potential energy </em>is directly proportional to the height of the objects with respect to some reference altitude. Thus, when the seat is at the position A the swing has the smallest potential energy and when the seat is at the <em>position B the swing has the greatest potential energy.</em>
Regarding the forms of energy, as the swing moves from point B to point A, it is going downward, gaining kinetic energy (speed) at the expense of the potential energy (losing altitude). When the seat passes by the position A, the kinetic energy is maximum and the potential energy is miminum. Then the seat starts to gain altitude again, losing the kinetic energy and gaining potential energy, up to it gets to the other end,