Answer:
1. bending of light in gravitational fields.
2. effect of gravitational redshift.
3. perihelion precission of mecury.
Explanation:
1 bending of light in gravitational fields, we can think of it like this:
by noting the change in position s of stars as they pass near the sun on the celetial sphere, so since the sun creates a gravitational field even the star thats not in our line of side(behind the sun) can be seen because its light is bent.
2. effects of gravitational redshift:
this says that if you are in the gravitational field, your clock moves slower when it is seen by a distant observer.
3. perihelion precission of mecury:
according to Newtonian physics a two body system consisting of a lone orbiting the spherical mass would trace out an ellipse with the center of mass of the system as the focus but mercury deviates from that precission. then according to Einstein, the change in orientation of the orbital ellipsewithin its orbital plane is the effect of gravitation being mediated by the curvature of space-time.
I think transfers is the answer
Most geologists accept radiometric dating techniques as valid because radioactive elements decay at a constant and measurable rate.
Answer: Option C
<u>Explanation:</u>
Scientists prefer radioactive dating to carbon dating because it is more accurate in measuring. The analysis depends upon the radioactive decay of radioactive isotopes of any matter in a given rock or soil.
The parent atoms and daughter atoms are compared while studying, and hence age can be calculated easily. Radioactive decay depends upon the given half-life of the atom, which is a constant and is known. So, it would be very easy to calculate the number of progeny atoms and parent atoms and find out their age.
Tooth fillings are often made of gold or porcelain because these materials are nonreactive.
b. nonreactive.