Voltage = N * Δ(BA)/Δt
<span>BA = 0.57*0.16*0.22 = 2.0064e-2 </span>
<span>N = 505 </span>
<span>115/505 = Δ(BA)/Δt = 23/101 </span>
<span>When the top of the coil rotates to the bottom (1/2 half cycle) BA changes from max to min and when the bottom rotates back to the top BA changes from min to max. So Δ(BA) is twice per cycle </span>
<span>So 2*101Δ(BA)=23Δt and Δt = 1/f </span>
<span>202*2.0064e-2/23 =Δt = 1/f => f =5.675Hz</span>
The band of stability curves upward at high atomic numbers due to the fact that excess of neutrons are required due to the repulsion between protons.
Atomic number is the number of protons. As the number of protons (atomic number) increase, the electrical repulsion force, due to the same sign of the protons inside the nucleus, becomes more dominant compared to the nuclear force attractions, then the nucleus needs more neutrons to gain stability.The presence of more neutrons decrease the density of protons which decreases the repulsion among them.
Explanation:
Let acceleration due to Gravity for a planet is given by:

Here,
Escape velocity is given by:

Here,
and g_X = 2g
Therefore,
Explanation:
Given that,
Distance 1, r = 100 m
Intensity, 
If distance 2, r' = 25 m
We need to find the intensity and the intensity level at 25 meters. Intensity and a distance r is given by :
.........(1)
Let I' is the intensity at r'. So,
............(2)
From equation (1) and (2) :



Intensity level is given by :
, 

dB = 32.96 dB
Hence, this is the required solution.