Object 2 has more kinetic energy
Explanation:
The kinetic energy of an object is the energy possessed by the object due to its motion, and it is given by

where
m is the mass of the object
v is its speed
In this problem, for object 1:
m = 2 kg
v = 2 m/s
So its kinetic energy is

For object 2,
m = 4 kg
v = 3 m/s
So its kinetic energy is

Therefore, object 2 has more kinetic energy.
Learn more about kinetic energy:
brainly.com/question/6536722
#LearnwithBrainly
The law of conservation of energy is:
-- Energy can't be created or destroyed.
-- Energy can't just appear out of nowhere. If you suddenly have
more energy, then the 'extra' energy had to come from somewhere.
-- Energy can't just disappear. If you suddenly have less energy,
then the 'missing' energy had to go somewhere.
________________________________________
There are also conservation laws for mass and electric charge.
They say exactly the same thing. Just write 'mass' or 'charge'
in the sentences up above, in place of the word 'energy'.
________________________________________
And now I can tell you that the conservation laws for energy and mass
are actually one single law ... the conservation of mass/energy. That's
because we discovered about 100 years ago that mass can convert
into energy, and energy can convert into mass, and it's the total of BOTH
of them that gets conserved (can't be created or destroyed).
How much mass makes how much energy ?
The answer is E = m c² .
Answer:
7066kg/m³
Explanation:
The forces in these cases (air and water) are: Fa =mg =ρbVg Fw =(ρb −ρw)Vg where ρw = 1000 kg/m3 is density of water and ρb is density of the block and V is its density. We can find it from this two equations:
Fa /Fw = ρb / (ρb −ρw) ρb = ρw (Fa /Fa −Fw) =1000·(1* 21.2 /21.2 − 18.2)
= 7066kg/m³
Explanation:
<span>Neo and Morpheus's masses have gained a velocity (not equal to zero) which means their momentum is now based on gravity and friction alone.</span>