Answer:
increasing; speeding up is my answer
Answer : The final pressure in the two containers is, 2.62 atm
Explanation :
Boyle's Law : It is defined as the pressure of the gas is inversely proportional to the volume of the gas at constant temperature and number of moles.

Thus, the expression for final pressure in the two containers will be:


where,
= pressure of N₂ gas = 4.45 atm
= pressure of Ar gas = 2.75 atm
= volume of N₂ gas = 3.00 L
= volume of Ar gas = 2.00 L
P = final pressure of gas = ?
V = final volume of gas = (4.45 + 2.75) L = 7.2 L
Now put all the given values in the above equation, we get:


Thus, the final pressure in the two containers is, 2.62 atm
The Pacific is loosely shaped like a triangle, opening widely to the south but barely at all to the north, while the Atlantic is shaped like an hourglass with the choke point located very loosely at the equator (somewhat south of it in the west).
In order to make his measurements for determining the Earth-Sun distance, Aristarchus waited for the Moon's phase to be exactly half full while the Sun was still visible in the sky. For this reason, he chose the time of a half (quarter) moon.
<h3 /><h3>How did Aristarchus calculate the distance to the Sun?</h3>
It was now possible for another Greek astronomer, Aristarchus, to attempt to determine the Earth's distance from the Sun after learning the distance to the Moon. Aristarchus discovered that the Moon, the Earth, and the Sun formed a right triangle when they were all equally illuminated. Now that he was aware of the distance between the Earth and the Moon, all he needed to know to calculate the Sun's distance was the current angle between the Moon and the Sun. It was a wonderful argument that was weakened by scant evidence. Aristarchus calculated this angle to be 87 degrees using only his eyes, which was not far off from the actual number of 89.83 degrees. But when there are significant distances involved, even slight inaccuracies might suddenly become significant. His outcome was more than a thousand times off.
To know more about how Aristarchus calculate the distance to the Sun, visit:
brainly.com/question/26241069
#SPJ4