Answer:
A
Explanation:
Actual output divided by the effective capacity. It is the ratio of output to effectiveness
Answer:
4.37 * 10^-4 J
Explanation:
Energy stored :
mgΔl / 2
m = mass = 10kg ; g = 9.8m/s² ; r = cross sectional Radius = 1cm = 1 * 10-2 m
Δl = mgl / πr²Y
Y = Youngs modulus = Y=3.5 ×10^10 ; l = Length = 1m
Δl = (10 * 9.8 * 1) / π * (1 * 10^-2)²* 3.5 ×10^10
Δl = 98 / 3.5 * π * 10^6
Δl = 0.00000891267
Energy stored :
mgΔl / 2
(10 * 9.8 * 0.00000891267) / 2
= 0.00043672083 J
4.37 * 10^-4 J
answer:They are too close to the sun!
Explanation:Because Mercury is so close to the Sun and its gravity, it wouldn't be able to hold on to its own moon. Any moon would most likely crash into Mercury or maybe go into orbit around the Sun and eventually get pulled into it.Same with Venus!
<h2>
Answer:</h2>
0.126m
<h2>
Explanation:</h2>
According to Hooke's law, the force (F) acting on a spring to cause an extension or compression (e) is given by;
F = k x e -------------------(i)
Where;
k = the spring's constant.
From the question, the force acting on the spring is the weight(W) of the mass. i.e
F = W -----------------------(ii)
<em>But;</em>
W = m x g;
where;
m = mass of the object
g = acceleration due to gravity [usually taken as 10m/s²]
<em>From equation (ii), it implies that;</em>
F = W = m x g
<em>Now substitute F = m x g into equation(i) as follows;</em>
F = k x e
m x g = k x e ------------------(iii)
<em>From the question;</em>
m = m1 = 3.5kg
k = 278N/m
<em>Substitute these values into equation (iii) as follows;</em>
3.5 x 10 = 278 x e
35 = 278e
<em>Now solve for e;</em>
e = 35/278
e = 0.126m
Therefore, the distance the spring is stretched from its unstretched length (which is the same as the extension of the spring) is 0.126m