Answer:
Qsinθ/4πε₀R²θ
Explanation:
Let us have a small charge element dq which produces an electric field E. There is also a symmetric field at P due to a symmetric charge dq at P. Their vertical electric field components cancel out leaving the horizontal component dE' = dEcosθ = dqcosθ/4πε₀R² where r is the radius of the arc.
Now, let λ be the charge per unit length on the arc. then, the small charge element dq = λds where ds is the small arc length. Also ds = Rθ.
So dq = λRdθ.
Substituting dq into dE', we have
dE' = dqcosθ/4πε₀R²
= λRdθcosθ/4πε₀R²
= λdθcosθ/4πε₀R
E' = ∫dE' = ∫λRdθcosθ/4πε₀R² = (λ/4πε₀R)∫cosθdθ from -θ to θ
E' = (λ/4πε₀R)[sinθ] from -θ to θ
E' = (λ/4πε₀R)[sinθ]
= (λ/4πε₀R)[sinθ - sin(-θ)]
= (λ/4πε₀R)[sinθ + sinθ]
= 2(λ/4πε₀R)sinθ
= (λ/2πε₀R)sinθ
Now, the total charge Q = ∫dq = ∫λRdθ from -θ to +θ
Q = λR∫dθ = λR[θ - (-θ)] = λR[θ + θ] = 2λRθ
Q = 2λRθ
λ = Q/2Rθ
Substituting λ into E', we have
E' = (Q/2Rθ/2πε₀R)sinθ
E' = (Q/θ4πε₀R²)sinθ
E' = Qsinθ/4πε₀R²θ where θ is in radians
Answer:
By making the object sharp pointed
Si I think the answer is lster
Answer:
120
Explanation:
because if it was 60 it would have been 5 kilometers but ten is double so just double the 60 to 120 kilometers per hour
Answer:
a. A
Explanation:
Kepler's First Law says that the orbits of planets are ellipses with the sun at one focus of the ellipse. Moreover, Kepler’s Second Law says that the line joining the planet to the sun sweeps out equal areas in equal times as it moves along its orbit. Finally, Kepler’s Third Law says that the ratio of the squares of the periods for two planets is equal to the ratio of the cubes of their semi-major axes.
By these laws, the comet A will have lower orbital speed.