Answer:
Weak bonds require less energy to form than strong bonds
Explanation:
According to Coulomb's law, the force between two species is inversely proportional to the distance between them. That said, the bigger the atoms are, the greater the bond length should be to form a molecule.
As a result, for a greater bond length, the attraction force is lower than for a shorter bond length. This implies that large atoms would form weak bonds and small atoms would form strong bonds.
Bond energy is defined as the amount of energy required to break the bond. If a bond is weak, it would require a low amount of energy to break it. This is also true for energy of formation, as it's the same process taking place in the opposite direction.
Answer:
The answer is : D. Wind energy
Answer:
This question is incomplete, however, the unknown compound can be inferred to be "Lithium Bromide"
Explanation:
The unknown compound firstly is said to be an ionic compound. An ionic/electrovalent compound is a compound in which it's constituent ions transfer/receive electron(s). They are mostly made of group 1 and group 7 elements. Examples include NaCl, NaF, LiF and KCl.
Also, the ion (metallic ion) that produces a red flame test colour in a flame test is the <u>Lithium ion (Li⁺).</u> Also, when dissolved in water or hexane, the only halogen that produces a red/orange colour is bromine. Hence, the unknown ionic compound can be inferred to be Lithium Bromide.
Answer:
The first 5 are exothermic reaction because heat is in product means heat is evolved or given out.
And last no reaction shows that heat is required so last reaction is endothermic reaction.
Explanation:
And heat is evolved in exothermic reaction and heat is absorbed in endo thermic reaction
There are six atoms of oxygen in that compound.