Answer:
Psm = 30.66 [Psig]
Explanation:
To solve this problem we will use the ideal gas equation, recall that the ideal gas state equation is always worked with absolute values.
P * v = R * T
where:
P = pressure [Pa]
v = specific volume [m^3/kg]
R = gas constant for air = 0.287 [kJ/kg*K]
T = temperature [K]
<u>For the initial state</u>
<u />
P1 = 24 [Psi] + 14.7 = 165.47[kPa] + 101.325 = 266.8 [kPa] (absolute pressure)
T1 = -2.6 [°C] = - 2.6 + 273 = 270.4 [K] (absolute Temperature)
Therefore we can calculate the specific volume:
v1 = R*T1 / P1
v1 = (0.287 * 270.4) / 266.8
v1 = 0.29 [m^3/kg]
As there are no leaks, the mass and volume are conserved, so the volume in the initial state is equal to the volume in the final state.
V2 = 0.29 [m^3/kg], with this volume and the new temperature, we can calculate the new pressure.
T2 = 43 + 273 = 316 [K]
P2 = R*T2 / V2
P2 = (0.287 * 316) / 0.29
P2 = 312.73 [kPa]
Now calculating the manometric pressure
Psm = 312.73 -101.325 = 211.4 [kPa]
And converting this value to Psig
Psm = 30.66 [Psig]
Answer:
50 watts
Explanation:
Applying,
Power (P) = Workdone (W)/Time(t)
But,
Work done (W) = Force (F)×distance(d)
Therefore,
P = Fd/t..................... Equation 1
Where P = power of the weightlifter, F = Force applied, d = distance, t = time.
From the question,
Given: F = 200 N, d = 0.5 m, t = 2 s
Substitute these values into equation 1
P = (200×0.5)/2
P = 100/2
P = 50 watts
Answer:
Volcanic Eruptions
Explanation:
The volcano can start showing signs that it may be about to explode.
Answer:
in the nucleus of the atom
Explanation:
a p 3 x
Answer:
1.1x10^-2N
Explanation:
We have the change in momentum as
P = 0.3(4.5+12)g.mph
= 0.3x0.447x(4.5+12)x10^-3
Then the force that is exerted will be
F = p/∆t
∆t = 0.2
= 0.3x0.447x(4.5+12)x10^-3/0.2
= 0.1341x16.5x10^-3/0.2
= 1.1x10^-2
Therefore the force that was exerted is equal to 1.1x10^-2