Explanation:
Since its accelerating, the velocity vs time graph is linear
For displacement we need initial velocity (which is zero because it starts from rest) and final velocity (which is calculatee thro acceleration formula
A= (vf - vi)/t
a= vf-0/t
1.25=vf / 7
1.25*7=vf
8.75 = vf
Now for displacement plug all the values in
X = 1/2(vf-vi)/t formula
The displacement (x) is 30.625 m
For part 3, we know new displacement that is 22m , the final and initial velocities are the same so just plug in the values for same formula above
The answer is t = 5.02
Im pretty sure all the answers are correct
They would have disliked that they had to relearn how to measure.
Answer:
i. 6.923 V
ii. The e.m.f. = 22.5 V
Explanation:
i. The given parameters are;
Length of potentiometer = 1 m
The resistance of the potentiometer = 10 Ω
The e. m. f. of the attached cell = 9 V
The current, I flowing in the circuit = e. m. f/(Total resistance)
The current, I flowing in the circuit = 9 V/(10 + 3) = 9/13 A
The potential difference, p.d. across the 1 m potentiometer wire = I × Resistance of the potentiometer wire
The p.d. across the potentiometer wire = 9/13×10 = 90/13 = 6.923 V
ii) Given that the 1 m potentiometer wire has a resistance of 10 Ω, 75 cm which is 0.75 m will have an e.m.f. given by the following relation;

Where:
E = e.m.f. of the balance point cell
= Resistance of 75 cm of potentiometer wire = 0.75×10 = 7.5 Ω
= Resistance of the cell in the circuit = 3 Ω
V = e.m.f. attached cell = 9 V

E = 7.5*3 = 22.5 V
The e.m.f. = 22.5 V
Answer:
Velocity will be 13.9 m/s when they are 1.3 m away from each other.
Explanation:
Detailed steps are attached below.