Answer:
the work is done by the gas on the environment -is W= - 3534.94 J (since the initial pressure is lower than the atmospheric pressure , it needs external work to expand)
Explanation:
assuming ideal gas behaviour of the gas , the equation for ideal gas is
P*V=n*R*T
where
P = absolute pressure
V= volume
T= absolute temperature
n= number of moles of gas
R= ideal gas constant = 8.314 J/mol K
P=n*R*T/V
the work that is done by the gas is calculated through
W=∫pdV= ∫ (n*R*T/V) dV
for an isothermal process T=constant and since the piston is closed vessel also n=constant during the process then denoting 1 and 2 for initial and final state respectively:
W=∫pdV= ∫ (n*R*T/V) dV = n*R*T ∫(1/V) dV = n*R*T * ln (V₂/V₁)
since
P₁=n*R*T/V₁
P₂=n*R*T/V₂
dividing both equations
V₂/V₁ = P₁/P₂
W= n*R*T * ln (V₂/V₁) = n*R*T * ln (P₁/P₂ )
replacing values
P₁=n*R*T/V₁ = 2 moles* 8.314 J/mol K* 300K / 0.1 m3= 49884 Pa
since P₂ = 1 atm = 101325 Pa
W= n*R*T * ln (P₁/P₂ ) = 2 mol * 8.314 J/mol K * 300K * (49884 Pa/101325 Pa) = -3534.94 J
Answer:
The liquid turns to a gas.
Explanation:
If a liquid is heated the particles are given more energy and move faster and faster expanding the liquid. Particles in the middle of the liquid form bubbles of gas in the liquid.
Answer:
D. 18.60
Explanation:
By the law of conservation, the momentum is neither loss nor gained but instead transfered. When they crash into each other, and stick, they combine to create a total mass of 215 kg. Since the momentum is transfered, the two objects, combined, have a total momentum of 4000 kg-m/s. We know that momentum equals mass times velocity. You then divide 4000 by 215 and get approximately 18.6 m/s
Answer: The energy absorbed by the reaction from the water is 996 Joules.
Explanation:
Energy absorbed by the reaction or energy lost by the water to the reaction,Q.
Mass of the the reaction ,m = 60 g
Specific heat of water = c = 4.15 J\g ^oC
Change is temperature=

Negative sigh indicates that energy was given by the water to the reaction.
The energy absorbed by the reaction from the water is 996 Joules.
Answer:
The fraction of the protons would have no electrons 
Explanation:
We are given that
Amoeba has total number of protons=
Net charge, Q=0.300pC
Electrons are fewer than protons=
We have to find the fraction of protons would have no electrons.
The fraction of the protons would have no electrons
=
The fraction of the protons would have no electrons
=

Hence, the fraction of the protons would have no electrons 