Answer:
Explanation:
We need the power equation here:
P = W/t where W is work and is defined as
W = F*displacement.
Force is a measure in Newtons, which is also weight. We have the mass of the piano, but we need to find the weight:
w = mg so
w = 166(9.8) so
w = 1600N, rounded to the correct number of sig dig. We use that now in the power equation:
and isolating the unknown:
so
t = 5.3 seconds
Answer:
35 mph
Explanation:
The key of this problem lies in understanding the way that projectile motion works as we are told to neglect the height of the javelin thrower and wind resistance.
When the javelin is thown, its velocity will have two components: a x component and a y component. The only acceleration that will interact with the javelin after it was thown will be the gravety, which has a -y direction. This means that the x component of the velocity will remain constant, and only the y component will be affected, and can be described with the constant acceleration motion properties.
When an object that moves in constant acceleration motion, the time neccesary for it to desaccelerate from a velocity v to 0, will be the same to accelerate the object from 0 to v. And the distance that the object will travel in both desaceleration and acceleration will be exactly the same.
So, when the javelin its thrown, it willgo up until its velocity in the y component reaches 0. Then it will go down, and it will reach reach the ground in the same amount of time it took to go up and, therefore, with the same velocity.
Calculate its average speed in meters per second
Answer:
5.77 m/s
Explanation:
Speed= Distance/Time
Distance= 40+ half of 40= 40+20= 60 m
Time= 8.8+1.6=10.4 s
Average speed= 60/10.4=5.769230769 m/s
Approximately, the average speed is 5.77 m/s
It means that velocity not only has a size, but it also has a direction.
Some other vector quantities are force and acceleration.
They have sizes and directions.
Temperature, cost, and weight are quantities with only size and no direction.
Those are called "scalar" quantities.