Answer: precise
Explanation:
Three different people weight a standard mass of 2.00 g on the same balance. Each person obtains a reading of 2.32 g for the mass of the standard. These results imply that the balance that was used is precise.
Precision can be defined as the closeness of measured values to each other, for a measuring equipment it is the closeness of the values of readings obtained at different times to each other. It does not necessarily means the measurements are accurate(closeness to the actual value). Therefore, in the case above where three different people measured the same mass on the same balance, and each of them obtained the same value which is different from the standard value. We can say the balance used is precise because the three readings are the same.
Answer:
y = 2.76 [m]
Explanation:
We can find the distance of the fall of the apple using the following kinematic equation, we have to emphasize that this is a typical problem of free fall, so the initial speed is zero, then we give the initial data.
t = time = 0,75[s]
g = gravity = 9.81[m/s^2]
v0 = 0
![y = v_{0}*t+0.5*g*t^{2}\\ y=0.5*(9.81)*(0.75)^{2}\\y= 2.76[m]](https://tex.z-dn.net/?f=y%20%3D%20v_%7B0%7D%2At%2B0.5%2Ag%2At%5E%7B2%7D%5C%5C%20y%3D0.5%2A%289.81%29%2A%280.75%29%5E%7B2%7D%5C%5Cy%3D%202.76%5Bm%5D)
Answer:
Velocidad final, V = 8 m/s
Explanation:
Dados los siguientes datos;
Velocidad inicial, u = 4 m/s
Aceleración, a = 2 m/s²
Tiempo, t = 2 segundos
Para encontrar la velocidad final (v), usaríamos la primera ecuación de movimiento;
V = u + at
Sustituyendo en la fórmula, tenemos;
V = 4 + 2*2
V = 4 + 4
Velocidad final, V = 8 m/s
Answer:
213 s
Explanation:
Slope is the ratio of change in vertical distance to change in horizontal distance.
Slope = vertical height / horizontal height
Therefore:
6.4% = vertical height / 12.42
vertical height = 6.4% * 12.42
vertical height = 0.8 miles
The distance travelled by the car (s) is:
s² = 0.8² + 12.42²
s² = 154.9
s = 12.45 miles
Acceleration (a) = 2.93 ft/s^2 = 0.00055 mile/s²
initial velocity (u) = 0, final velocity = 203 mph
Using:
s = ut + 0.5at²
12.45 = 0.5(0.00055)t²
t =213 s