To solve the problem it is necessary to apply the concepts given in the kinematic equations of angular motion that include force, acceleration and work.
Torque in a body is defined as,

And in angular movement like

Where,
F= Force
d= Distance
I = Inertia
Acceleration Angular
PART A) For the given case we have the torque we have it in component mode, so the component in the X axis is the net for the calculation.

On the other hand we have the speed data expressed in RPM, as well


Acceleration can be calculated by



In the case of Inertia we know that it is equivalent to


Matching the two types of torque we have to,




PART B) The work performed would be calculated from the relationship between angular velocity and moment of inertia, that is,



Answer:
Airplane wings must be designed to ensure that air molecules move more rapidly over the top surface of the wing, creating a region of lower pressure.
Explanation:
Air pollution level is higher in Location B, because poisonous fumes are produced when coal burns.
Any charged object can<span> exert the force upon other objects ... i think tell me if im right</span>
Answer:
x component 3.88 y- component 14.488
Explanation:
We have given a vector A which has a magnitude of 15 m/sec which is at 75° counter-clock wise ( anti-clock wise) from x -axis which is clearly shown in bellow figure
Now x-component will be 15 cos75°=3.8822 ( as it makes an angle of 75° with x-axis )
y- component will be 15 sin 75°=14.488
For verification the resultant of x and y component should be equal to 15
So 