Magnitude of acceleration
Explanation:
We know that acceleration can increase depending in the force applied on an object, any object with a greater mass will apply a greater force. F = M(a).
The book is lifted upward, but gravity points down, so the work done by gravity must be negative (so you can eliminate options 1 and 3).
The force exerted on the book by gravity has magnitude
<em>F</em> = <em>mg</em> = (10 N) (9.80 m/s^2) = 9.8 N ≈ 10 N
You raise the book 1.0 m in the opposite direction, so the work done is
<em>W</em> = (10 N) (-1.0 m) = -10 J
<span>This problem is relatively simple, in order to solve this problem the only formula you need to know is the formula for friction, which is:
Ff = UsN
where Us is the coefficient of static friction and N is the normal force.
In order to get the crate moving you must first apply enough force to overcome the static friction:
Fapplied = Ff
Since Fapplied = 43 Newtons:
Fapplied = Ff = 43 = UsN
and it was given that Us = 0.11, so all you have to do is isolate N by dividing both sides by 0.11
43/0.11 = N = 390.9 which is approximately 391 or C. 3.9x10^2</span>
Answer:
Total momentum = 50kgm/s
Explanation:
<u>Given the following data;</u>
Mass, M1 = 5kg
Mass, M2 = 7kg
Velocity, V1 = 10m/s
Velocity, V2 = 0m/s (since it's at rest).
To find the total momentum;
Momentum can be defined as the multiplication (product) of the mass possessed by an object and its velocity. Momentum is considered to be a vector quantity because it has both magnitude and direction.
Mathematically, momentum is given by the formula;
The law of conservation of momentum states that the total linear momentum of any closed system would always remain constant with respect to time.
Total momentum = M1V1 + M2V2
Substituting into the equation, we have;
Total momentum = 5*10 + 7*0
Total momentum = 50 + 0
<em>Total momentum = 50 kgm/s</em>
<em>Therefore, the total momentum of the bowling ball and the putty after they collide is 50 kgm/s. </em>