The answer to this is B, C, and D. hope this helped
D=-5m
a(gravity)=-9.8m/s^2
vi= 0m/s
t=?
use equation d=vi*t+0.5a*t^2
because vi=0, you can cross out vi*t because anything multiplied by 0= 0
rearrange the equation to say t^2=d/0.5a
t^2= -5/-4.9
t^2=1.02
find the square root...
final answer: t=1s
Value of g on Venus=8.87 m/s²
Period of pendulum=1.75 s
Given pendulum,
T=2π√(L/g)
(1.5)=2π√(L/8.87)
L=0.505 m
Answer:
-0.64525g
Explanation:
t = Time taken for the car to stop
u = Initial velocity = 95 km/h
v = Final velocity = 0 km/h
s = Displacement
a = Acceleration
Equation of motion

Converting to m/s²

g = Acceleration due to gravity = 9.81 m/s²
Dividing both the accelerations, we get

Hence, acceleration of the car is -0.64525g
Answer:
B) Its velocity is perpendicular to the acceleration.
Explanation:
For general projectile motion, the horizontal acceleration is 0 and the vertical acceleration is -g. This is true for all points on the trajectory.
At the highest point, the vertical velocity is 0. So you have only a horizontal velocity as well as a vertical acceleration. So the two are perpendicular.