Answer:
a=3.53 m/s^2
Explanation:
Vo=0 m/s (because he is not moving at the start)
V1=15 m/s
t= 4.25 s
a = (V1-Vo) / t = 15/4.25 = 3.53 m/s^2
Answer:
I(x) = 1444×k ×
I(y) = 1444×k ×
I(o) = 3888×k ×
Explanation:
Given data
function = x^2 + y^2 ≤ 36
function = x^2 + y^2 ≤ 6^2
to find out
the moments of inertia Ix, Iy, Io
solution
first we consider the polar coordinate (a,θ)
and polar is directly proportional to a²
so p = k × a²
so that
x = a cosθ
y = a sinθ
dA = adθda
so
I(x) = ∫y²pdA
take limit 0 to 6 for a and o to
for θ
I(x) =
y²p dA
I(x) =
(a sinθ)²(k × a²) adθda
I(x) = k
da ×
(sin²θ)dθ
I(x) = k
da ×
(1-cos2θ)/2 dθ
I(x) = k
×
I(x) = k ×
× (
I(x) = k ×
×
I(x) = 1444×k ×
.....................1
and we can say I(x) = I(y) by the symmetry rule
and here I(o) will be I(x) + I(y) i.e
I(o) = 2 × 1444×k ×
I(o) = 3888×k ×
......................2
In thermodynamics, work of a system at constant pressure conditions is equal to the product of the pressure and the change in volume. It is expressed as follows:
W = P(V2 - V1)
W = 1.3x10^5 (2x6 - 6 )
<span>W = 780000 J
</span>
Hope this answers the question. Have a nice day.
Explanation:
13 cmHg (centimeters of mercury) is the pressure at the bottom of a column of mercury 13 cm deep. It is the equivalent of about 17.3 kPa or 2.5 psi.