<span>
Of course. Wind is air in motion, and the gases in air are composed of
all the usual familiar stuff ... atoms, molecules, mass, etc. That's how
the wind moves things ... it has momentum and kinetic energy, which
get transferred to the things that move in the wind.</span>
Answer:
A = 2.36m/s
B = 3.71m/s²
C = 29.61m/s2
Explanation:
First, we convert the diameter of the ride from ft to m
10ft = 3m
Speed of the rider is the
v = circumference of the circle divided by time of rotation
v = [2π(D/2)]/T
v = [2π(3/2)]/4
v = 3π/4
v = 2.36m/s
Radial acceleration can also be found as a = v²/r
Where v = speed of the rider
r = radius of the ride
a = 2.36²/1.5
a = 3.71m/s²
If the time of revolution is halved, then radial acceleration is
A = 4π²R/T²
A = (4 * π² * 3)/2²
A = 118.44/4
A = 29.61m/s²
To find:
The equation to find the period of oscillation.
Explanation:
The period of oscillation of a pendulum is directly proportional to the square root of the length of the pendulum and inversely proportional to the square root of the acceleration due to gravity.
Thus the period of a pendulum is given by the equation,

Where L is the length of the pendulum and g is the acceleration due to gravity.
On substituting the values of the length of the pendulum and the acceleration due to gravity at the point where the period of the pendulum is being measured, the above equation yields the value of the period of the pendulum.
Final answer:
The period of oscillation of a pendulum can be calculated using the equation,
<span>
Reaction rates are affected by reactant concentrations and temperature. this is accounted for by the c</span>ollision model.
-Hope this helps.
Answer:


Explanation:
<u>Displacement
</u>
It's a vector magnitude that measures the space traveled by a particle between an initial and a final position. The total displacement can be obtained by adding the vectors of each individual displacement. In the case of two displacements:

Given a vector as its polar coordinates (r,\theta), the corresponding rectangular coordinates are computed with


And the vector is expressed as

The monkey first makes a displacement given by (0.198 km,0°). The angle is 0 because it goes to the East, the zero-reference for angles. Thus the first displacement is

The second move is (145 m , -15.8°). The angle is negative because it points South of East. The second displacement is

The total displacement is


In (magnitude,angle) form:



