Answer:
<h2>
d₂ = 3d</h2><h2>
The diameter of the second wire is 3 times that of the initial wire.</h2>
Explanation:
Using the formula for calculating the resistivity of an object to find the diameter.
Resistivity P = RA/L
R is the resistance of the material
A is the cross sectional area
L is the length of the material
Since A = πd²/4
P = R( πd²/4)/L
P = Rπd²/4L ... 1
If the second wire of the same material and length is found to have resistance R/9, the resistivity of the second material will be;
P₂ = (R/9)A₂/L₂
P₂ = (R/9)(πd₂²/4)/L₂
P₂ = (Rπd₂²/36)/L₂
P₂ = (Rπd₂²)/36L₂
Since the length and resistivity are the same;
P = P₂ and L =L₂
Equating 1 and 2;
Rπd²/4L = (Rπd₂²)/36L₂
Rπd²/4L = (Rπd₂²)/36L
d² = d₂²/9
d₂² = 9d²
Taking the square root of both sides;
√d₂² = √9d²
d₂ = 3d
Therefore the diameter of the second wire is 3 times that of the initial wire
Answer:
ok jsjajakaka you can come to me when you get home can you please send me the details of the day and I will be there at this time of year is the best way to get a hold of the guy who was the guy who was the guy who was the guy who was the guy who was the guy that was the only thing that was the case but I don't know if I can help you
I would look this one up on Google
Answer:
10
Explanation:
Lets say that a,b,c,d,e are the five allowed energy states in order of decreasing energy. Then the number of possible different spectral lines comes from the electron dropping from a high state to a lower state. So, they will do so in following ways:
a - b
a - c
a - d
a- e
b - c
b - d
b- e
c - d
c- e
d- e
Ans- Ten different possible energy jumps giving six different colors or lines in the spectrum.