Answer:
q2 = -4.35*10^-9C
Explanation:
In order to find the values of the second charge, you use the following formula:
(1)
V: electric potential = 1.14 kV = 1.14*10^3 kV
k: Coulomb's constant = 8.98*10^9 Nm^2/C^2
q1: charge 1 = 8.60*10^-9 C
q2: charge 2 = ?
r1: distance to the first charge = 20.7mm = 20.7*10^-3 m
r2: distance to the second charge = 15.1mm
You solve the equation (1) for q2, and replace the values of the other parameters:
![q_2=\frac{r_2}{k}[V-k\frac{q_1}{r_1}]=\frac{Vr_2}{k}-\frac{q_1r_2}{r_1}\\\\q_2=\frac{(1.14*10^3V)(15.1*10^{-3}m)}{8.98*10^9Nm^2/C^2}-\frac{(8.60*10^{-9}C)(15.1*10^{-3}m)}{20.7*10^{-3}m}\\\\q_2=-4.35*10^{-9}C](https://tex.z-dn.net/?f=q_2%3D%5Cfrac%7Br_2%7D%7Bk%7D%5BV-k%5Cfrac%7Bq_1%7D%7Br_1%7D%5D%3D%5Cfrac%7BVr_2%7D%7Bk%7D-%5Cfrac%7Bq_1r_2%7D%7Br_1%7D%5C%5C%5C%5Cq_2%3D%5Cfrac%7B%281.14%2A10%5E3V%29%2815.1%2A10%5E%7B-3%7Dm%29%7D%7B8.98%2A10%5E9Nm%5E2%2FC%5E2%7D-%5Cfrac%7B%288.60%2A10%5E%7B-9%7DC%29%2815.1%2A10%5E%7B-3%7Dm%29%7D%7B20.7%2A10%5E%7B-3%7Dm%7D%5C%5C%5C%5Cq_2%3D-4.35%2A10%5E%7B-9%7DC)
The values of the second charge is -4.35*10^-9C
The result of
changing a physical sound wave into an analogous electrical signal using a
transducer (such as a microphone) is called analogue audio. In this system, the rapid electrical level is
directly proportional to the rapid air pressure taken by the transducer. The analogue
signal is then augmented and can be kept on an analogue medium such as tape or transformed
further into a succession of discrete mathematical numbers. The advantages of
using this device is that it yields a subtle sound and is pleasing to the ear
by pushing the signal level and overdriving it. But the disadvantages are
editing it would be tedious and prone to degradation.
Which sentence from paragraph 4 most precisely explain the factors that determine the force of gravity?
- <em>"</em><em> </em><em>In</em><em> </em><em>other</em><em> </em><em>words</em><em>,</em><em> </em><em>these</em><em> </em><em>equations</em><em> </em><em>states</em><em> </em><em>the</em><em> </em><em>gravitational</em><em> </em><em>force</em><em> </em><em>between</em><em> </em><em>two</em><em> </em><em>bodies</em><em> </em><em>is</em><em> </em><em>proportional</em><em> </em><em>to</em><em> </em><em>the</em><em> </em><em>product</em><em> </em><em>of</em><em> </em><em>their</em><em> </em><em>masses</em><em> </em><em>and</em><em> </em><em>inversely</em><em> </em><em>proportional</em><em> </em><em>to</em><em> </em><em>the</em><em> </em><em>square</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>distance</em><em> </em><em>between</em><em> </em><em>them</em><em>.</em><em>"</em>
It's formula is g=GM/r²
False. Heat radiation from the sun cannot reach Earth, we cannot receive TV or GPS signals from satellites, and we cannot detect the light from distant stars.
Oh, wait . . .
Answer:
I = 0.0025 kg.m²
Explanation:
Given that
m= 2 kg
Diameter ,d= 0.1 m
Radius ,

R=0.05 m
The moment of inertia of the cylinder about it's axis same as the disc and it is given as

Now by putting the all values

I = 0.0025 kg.m²
Therefore we can say that the moment of inertia of the cylinder will be 0.0025 kg.m².